Spaces:
Sleeping
Sleeping
| import cv2 | |
| import torch | |
| import gradio as gr | |
| import numpy as np | |
| import os | |
| import json | |
| import logging | |
| import matplotlib.pyplot as plt | |
| import zipfile | |
| from datetime import datetime | |
| from collections import Counter | |
| from typing import List, Dict, Any, Optional | |
| from ultralytics import YOLO | |
| import ultralytics | |
| import time | |
| # Set YOLO config directory | |
| os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics" | |
| # Set up logging | |
| logging.basicConfig( | |
| filename="app.log", | |
| level=logging.INFO, | |
| format="%(asctime)s - %(levelname)s - %(message)s" | |
| ) | |
| # Directories | |
| CAPTURED_FRAMES_DIR = "captured_frames" | |
| ORIGINAL_FRAMES_DIR = "original_frames" | |
| OUTPUT_DIR = "outputs" | |
| os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True) | |
| os.makedirs(ORIGINAL_FRAMES_DIR, exist_ok=True) | |
| os.makedirs(OUTPUT_DIR, exist_ok=True) | |
| os.chmod(CAPTURED_FRAMES_DIR, 0o777) | |
| os.chmod(ORIGINAL_FRAMES_DIR, 0o777) | |
| os.chmod(OUTPUT_DIR, 0o777) | |
| # Global variables | |
| log_entries: List[str] = [] | |
| detected_counts: List[int] = [] | |
| detected_issues: List[str] = [] | |
| gps_coordinates: List[List[float]] = [] | |
| last_metrics: Dict[str, Any] = {} | |
| frame_count: int = 0 | |
| SAVE_IMAGE_INTERVAL = 1 | |
| # Load model | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = YOLO('./data/best.pt').to(device) | |
| if device == "cuda": | |
| model.half() | |
| print(f"Using {device}, model classes: {model.names}") | |
| # Helper functions | |
| def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str: | |
| map_path = "map_temp.png" | |
| plt.figure(figsize=(4, 4)) | |
| plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points') | |
| plt.title("Issue Locations Map") | |
| plt.xlabel("Longitude") | |
| plt.ylabel("Latitude") | |
| plt.legend() | |
| plt.savefig(map_path) | |
| plt.close() | |
| return map_path | |
| def send_to_salesforce(data: Dict[str, Any]) -> None: | |
| pass # Placeholder | |
| def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]: | |
| counts = Counter([det["label"] for det in detections]) | |
| return { | |
| "items": [{"type": k, "count": v} for k, v in counts.items()], | |
| "total_detections": len(detections), | |
| "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| } | |
| def generate_line_chart() -> Optional[str]: | |
| if not detected_counts: | |
| return None | |
| chart_path = "chart_temp.png" | |
| plt.figure(figsize=(4, 2)) | |
| plt.plot(detected_counts[-50:], marker='o', color='#FF8C00') | |
| plt.title("Detections Over Time") | |
| plt.xlabel("Frame") | |
| plt.ylabel("Count") | |
| plt.grid(True) | |
| plt.tight_layout() | |
| plt.savefig(chart_path) | |
| plt.close() | |
| return chart_path | |
| def create_zip_from_directory(dir_path: str, zip_filename: str) -> str: | |
| zip_path = os.path.join(OUTPUT_DIR, zip_filename) | |
| with zipfile.ZipFile(zip_path, 'w') as zipf: | |
| for root, _, files in os.walk(dir_path): | |
| for file in files: | |
| full_path = os.path.join(root, file) | |
| zipf.write(full_path, arcname=file) | |
| return zip_path | |
| # Main function | |
| def process_video(video, resize_width=320, resize_height=240, frame_skip=5): | |
| global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries | |
| frame_count = 0 | |
| detected_counts.clear() | |
| detected_issues.clear() | |
| gps_coordinates.clear() | |
| log_entries.clear() | |
| last_metrics = {} | |
| for dir_ in [CAPTURED_FRAMES_DIR, ORIGINAL_FRAMES_DIR]: | |
| for file in os.listdir(dir_): | |
| os.remove(os.path.join(dir_, file)) | |
| if video is None: | |
| log_entries.append("Error: No video uploaded") | |
| return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None | |
| cap = cv2.VideoCapture(video) | |
| if not cap.isOpened(): | |
| log_entries.append("Error: Could not open video file") | |
| return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None | |
| frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| output_path = "processed_output.mp4" | |
| out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (resize_width, resize_height)) | |
| all_detections = [] | |
| frame_times = [] | |
| detection_frame_count = 0 | |
| start_time = time.time() | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| frame_count += 1 | |
| if frame_count % frame_skip != 0: | |
| continue | |
| frame = cv2.resize(frame, (resize_width, resize_height)) | |
| results = model(frame, verbose=False, conf=0.5, iou=0.7) | |
| annotated_frame = results[0].plot() | |
| # Save original frame | |
| original_path = os.path.join(ORIGINAL_FRAMES_DIR, f"frame_{frame_count}.jpg") | |
| cv2.imwrite(original_path, frame) | |
| frame_detections = [] | |
| for detection in results[0].boxes: | |
| cls = int(detection.cls) | |
| conf = float(detection.conf) | |
| box = detection.xyxy[0].cpu().numpy().astype(int).tolist() | |
| label = model.names[cls] | |
| frame_detections.append({"label": label, "box": box, "conf": conf}) | |
| if frame_detections: | |
| detection_frame_count += 1 | |
| if detection_frame_count % SAVE_IMAGE_INTERVAL == 0: | |
| captured_path = os.path.join(CAPTURED_FRAMES_DIR, f"frame_{frame_count}.jpg") | |
| cv2.imwrite(captured_path, annotated_frame) | |
| detected_issues.append(captured_path) | |
| if len(detected_issues) > 100: | |
| detected_issues.pop(0) | |
| out.write(annotated_frame) | |
| gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)] | |
| gps_coordinates.append(gps_coord) | |
| for det in frame_detections: | |
| det["gps"] = gps_coord | |
| all_detections.extend(frame_detections) | |
| detected_counts.append(len(frame_detections)) | |
| frame_time = (time.time() - start_time) * 1000 | |
| frame_times.append(frame_time) | |
| last_metrics = update_metrics(all_detections) | |
| send_to_salesforce({ | |
| "detections": all_detections, | |
| "metrics": last_metrics, | |
| "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
| "frame_count": frame_count, | |
| "gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0] | |
| }) | |
| cap.release() | |
| out.release() | |
| chart_path = generate_line_chart() | |
| map_path = generate_map(gps_coordinates[-5:], all_detections) | |
| originals_zip = create_zip_from_directory(ORIGINAL_FRAMES_DIR, "original_images.zip") | |
| annotated_zip = create_zip_from_directory(CAPTURED_FRAMES_DIR, "annotated_images.zip") | |
| return ( | |
| output_path, | |
| json.dumps(last_metrics, indent=2), | |
| "\n".join(log_entries[-10:]), | |
| detected_issues, | |
| chart_path, | |
| map_path, | |
| originals_zip, | |
| annotated_zip | |
| ) | |
| # Gradio UI | |
| with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface: | |
| gr.Markdown("# Crack and Pothole Detection Dashboard") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| video_input = gr.Video(label="Upload Video") | |
| width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1) | |
| height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1) | |
| skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1) | |
| process_btn = gr.Button("Process Video", variant="primary") | |
| with gr.Column(scale=1): | |
| metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False) | |
| with gr.Row(): | |
| video_output = gr.Video(label="Processed Video") | |
| issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain") | |
| with gr.Row(): | |
| chart_output = gr.Image(label="Detection Trend") | |
| map_output = gr.Image(label="Issue Locations Map") | |
| with gr.Row(): | |
| logs_output = gr.Textbox(label="Logs", lines=5, interactive=False) | |
| with gr.Row(): | |
| originals_zip_out = gr.File(label="Download Original Images (ZIP)") | |
| annotated_zip_out = gr.File(label="Download Annotated Images (ZIP)") | |
| process_btn.click( | |
| process_video, | |
| inputs=[video_input, width_slider, height_slider, skip_slider], | |
| outputs=[ | |
| video_output, | |
| metrics_output, | |
| logs_output, | |
| issue_gallery, | |
| chart_output, | |
| map_output, | |
| originals_zip_out, | |
| annotated_zip_out | |
| ] | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |