Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,56 +1,61 @@
|
|
| 1 |
-
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import cv2
|
| 5 |
import random
|
| 6 |
-
from services.video_service import
|
| 7 |
from services.detection_service import detect_objects
|
| 8 |
from services.thermal_service import detect_thermal_anomalies
|
| 9 |
from services.shadow_detection import detect_shadow_coverage
|
| 10 |
from services.salesforce_dispatcher import send_to_salesforce
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
"data/drone_day.mp4",
|
| 15 |
-
"data/thermal_hotspot.mp4",
|
| 16 |
-
"data/shadow_dust_issue.mp4",
|
| 17 |
-
"data/alert_response.mp4",
|
| 18 |
-
]
|
| 19 |
-
|
| 20 |
-
# Pick a random video at app startup
|
| 21 |
-
selected_video = random.choice(VIDEO_LIST)
|
| 22 |
-
frame_gen = get_video_frame(selected_video)
|
| 23 |
|
| 24 |
def monitor_feed():
|
| 25 |
try:
|
| 26 |
frame = next(frame_gen)
|
| 27 |
-
|
| 28 |
-
return None
|
| 29 |
temp_path = "temp.jpg"
|
| 30 |
cv2.imwrite(temp_path, frame)
|
| 31 |
|
| 32 |
detections = detect_objects(temp_path)
|
| 33 |
thermal_boxes = detect_thermal_anomalies(temp_path)
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
alert_payload = {
|
| 37 |
-
"detections": detections,
|
| 38 |
-
"thermal": bool(thermal_boxes),
|
| 39 |
-
"shadow_issue": shadow_flag,
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
send_to_salesforce(alert_payload)
|
| 43 |
return frame
|
| 44 |
|
| 45 |
except StopIteration:
|
| 46 |
return None
|
| 47 |
|
| 48 |
-
iface = gr.Interface(
|
| 49 |
-
fn=monitor_feed,
|
| 50 |
-
inputs=[],
|
| 51 |
-
outputs="image",
|
| 52 |
-
live=True,
|
| 53 |
-
title="Solar Surveillance Feed Simulation"
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
iface.launch()
|
|
|
|
| 1 |
+
### Updated app.py
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import cv2
|
| 5 |
import random
|
| 6 |
+
from services.video_service import get_random_video_frame
|
| 7 |
from services.detection_service import detect_objects
|
| 8 |
from services.thermal_service import detect_thermal_anomalies
|
| 9 |
from services.shadow_detection import detect_shadow_coverage
|
| 10 |
from services.salesforce_dispatcher import send_to_salesforce
|
| 11 |
|
| 12 |
+
# Initialize frame generator
|
| 13 |
+
frame_gen = get_random_video_frame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def monitor_feed():
|
| 16 |
try:
|
| 17 |
frame = next(frame_gen)
|
| 18 |
+
|
|
|
|
| 19 |
temp_path = "temp.jpg"
|
| 20 |
cv2.imwrite(temp_path, frame)
|
| 21 |
|
| 22 |
detections = detect_objects(temp_path)
|
| 23 |
thermal_boxes = detect_thermal_anomalies(temp_path)
|
| 24 |
+
shadow_issue = detect_shadow_coverage(temp_path)
|
| 25 |
+
|
| 26 |
+
# Draw detections
|
| 27 |
+
for det in detections:
|
| 28 |
+
box = det['box']
|
| 29 |
+
cv2.rectangle(frame, (int(box['xmin']), int(box['ymin'])), (int(box['xmax']), int(box['ymax'])), (0, 255, 0), 2)
|
| 30 |
+
|
| 31 |
+
# Draw thermal anomalies
|
| 32 |
+
for box in thermal_boxes:
|
| 33 |
+
cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 2)
|
| 34 |
+
|
| 35 |
+
# Overlay text based on detections
|
| 36 |
+
overlay_text = []
|
| 37 |
+
if any(d['label'] == 'person' for d in detections):
|
| 38 |
+
overlay_text.append("Intrusion Detected")
|
| 39 |
+
if thermal_boxes:
|
| 40 |
+
overlay_text.append("Thermal Anomaly")
|
| 41 |
+
if shadow_issue:
|
| 42 |
+
overlay_text.append("Shadow Coverage Issue")
|
| 43 |
+
|
| 44 |
+
for idx, text in enumerate(overlay_text):
|
| 45 |
+
cv2.putText(frame, text, (10, 30 + idx * 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
| 46 |
+
|
| 47 |
+
# 🚨 Commented out Salesforce integration for now
|
| 48 |
+
# alert_payload = {
|
| 49 |
+
# "detections": detections,
|
| 50 |
+
# "thermal": bool(thermal_boxes),
|
| 51 |
+
# "shadow_issue": shadow_issue,
|
| 52 |
+
# }
|
| 53 |
+
# send_to_salesforce(alert_payload)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
return frame
|
| 56 |
|
| 57 |
except StopIteration:
|
| 58 |
return None
|
| 59 |
|
| 60 |
+
iface = gr.Interface(fn=monitor_feed, inputs=[], outputs="image", live=True, title="Solar Surveillance Feed Simulation", cache_examples=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
iface.launch()
|