nafisneehal
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import spaces
|
6 |
|
7 |
-
#
|
8 |
-
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
9 |
-
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
10 |
-
|
11 |
-
# Determine device (set to CPU for zero-GPU)
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
print(f"Using device: {device}")
|
14 |
-
|
15 |
-
# Load model and tokenizer
|
16 |
model_name = "linjc16/Panacea-7B-Chat"
|
17 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
18 |
model.to(device)
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
|
21 |
-
|
22 |
-
@spaces.GPU # This will handle spaces for either GPU or CPU as available
|
23 |
def generate_response(system_instruction, user_input):
|
24 |
-
# Format the prompt
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
# Generate model response
|
31 |
with torch.no_grad():
|
32 |
-
|
33 |
-
|
34 |
-
# Decode response
|
35 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("Bot:")[-1].strip()
|
36 |
|
37 |
-
return response
|
38 |
|
39 |
-
#
|
40 |
with gr.Blocks() as demo:
|
41 |
gr.Markdown("# Clinical Trial Chatbot")
|
42 |
|
43 |
with gr.Row():
|
44 |
-
# Left
|
45 |
with gr.Column():
|
46 |
system_instruction = gr.Textbox(
|
47 |
placeholder="Enter system instruction here...", label="System Instruction")
|
@@ -49,12 +40,12 @@ with gr.Blocks() as demo:
|
|
49 |
placeholder="Type your message here...", label="Your Message")
|
50 |
submit_btn = gr.Button("Submit")
|
51 |
|
52 |
-
# Right column for displaying bot
|
53 |
with gr.Column():
|
54 |
response_display = gr.Textbox(
|
55 |
label="Bot Response", interactive=False, placeholder="Response will appear here.")
|
56 |
|
57 |
-
# Link
|
58 |
submit_btn.click(generate_response, [system_instruction, user_input], response_display)
|
59 |
|
60 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import spaces
|
5 |
|
6 |
+
# Initialize model
|
|
|
|
|
|
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
8 |
model_name = "linjc16/Panacea-7B-Chat"
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
10 |
model.to(device)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
+
@spaces.GPU
|
|
|
14 |
def generate_response(system_instruction, user_input):
|
15 |
+
# Format the prompt using the messages structure
|
16 |
+
messages = [
|
17 |
+
{"role": "system", "content": system_instruction},
|
18 |
+
{"role": "user", "content": user_input},
|
19 |
+
]
|
20 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
|
21 |
+
model_inputs = encodeds.to(device)
|
22 |
|
23 |
# Generate model response
|
24 |
with torch.no_grad():
|
25 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
26 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0].split("Bot:")[-1].strip()
|
|
|
|
|
27 |
|
28 |
+
return response
|
29 |
|
30 |
+
# Gradio interface setup
|
31 |
with gr.Blocks() as demo:
|
32 |
gr.Markdown("# Clinical Trial Chatbot")
|
33 |
|
34 |
with gr.Row():
|
35 |
+
# Left sidebar for inputs
|
36 |
with gr.Column():
|
37 |
system_instruction = gr.Textbox(
|
38 |
placeholder="Enter system instruction here...", label="System Instruction")
|
|
|
40 |
placeholder="Type your message here...", label="Your Message")
|
41 |
submit_btn = gr.Button("Submit")
|
42 |
|
43 |
+
# Right column for displaying bot response
|
44 |
with gr.Column():
|
45 |
response_display = gr.Textbox(
|
46 |
label="Bot Response", interactive=False, placeholder="Response will appear here.")
|
47 |
|
48 |
+
# Link submit button to the generate_response function
|
49 |
submit_btn.click(generate_response, [system_instruction, user_input], response_display)
|
50 |
|
51 |
# Launch the app
|