ecg-classification / model_def.py
nabeelraza's picture
Add: included butter filter
e9321a8
import torch
from torch import nn
import torch.nn.functional as F
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
n_filters = 64
self.conv_1 = nn.Conv1d( 1, n_filters, 8, stride=1, padding='same')
self.norm_1 = nn.BatchNorm1d(n_filters)
self.conv_2 = nn.Conv1d(n_filters, n_filters, 5, stride=1, padding='same')
self.norm_2 = nn.BatchNorm1d(n_filters)
self.conv_3 = nn.Conv1d(n_filters, n_filters, 3, stride=1, padding='same')
self.norm_3 = nn.BatchNorm1d(n_filters)
self.conv_4 = nn.Conv1d( 1, n_filters, 1, stride=1, padding='same') # Expanding for addition
self.norm_4 = nn.BatchNorm1d(n_filters)
self.conv_5 = nn.Conv1d( n_filters, n_filters*2, 8, stride=1, padding='same')
self.norm_5 = nn.BatchNorm1d(n_filters*2)
self.conv_6 = nn.Conv1d(n_filters*2, n_filters*2, 5, stride=1, padding='same')
self.norm_6 = nn.BatchNorm1d(n_filters*2)
self.conv_7 = nn.Conv1d(n_filters*2, n_filters*2, 3, stride=1, padding='same')
self.norm_7 = nn.BatchNorm1d(n_filters*2)
self.conv_8 = nn.Conv1d( n_filters, n_filters*2, 1, stride=1, padding='same')
self.norm_8 = nn.BatchNorm1d(n_filters*2)
self.conv_9 = nn.Conv1d(n_filters*2, n_filters*2, 8, stride=1, padding='same')
self.norm_9 = nn.BatchNorm1d(n_filters*2)
self.conv_10 = nn.Conv1d(n_filters*2, n_filters*2, 5, stride=1, padding='same')
self.norm_10 = nn.BatchNorm1d(n_filters*2)
self.conv_11 = nn.Conv1d(n_filters*2, n_filters*2, 3, stride=1, padding='same')
self.norm_11 = nn.BatchNorm1d(n_filters*2)
# self.conv_12 = nn.Conv1d(n_filters*2, n_filters*2, 1, stride=1, padding='same')
self.norm_12 = nn.BatchNorm1d(n_filters*2)
self.classifier = nn.Linear(128, 7)
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, x):
x = x.float()
# Block 1
a = self.conv_1(x)
a = self.norm_1(a)
a = F.relu(a)
b = self.conv_2(a)
b = self.norm_2(b)
b = F.relu(b)
c = self.conv_3(b)
c = self.norm_3(c)
shortcut = self.conv_4(x)
shortcut = self.norm_4(shortcut)
output_1 = torch.add(c, shortcut)
output_1 = F.relu(output_1)
#Block 2
a = self.conv_5(output_1)
a = self.norm_5(a)
a = F.relu(a)
b = self.conv_6(a)
b = self.norm_6(b)
b = F.relu(b)
c = self.conv_7(b)
c = self.norm_7(c)
shortcut = self.conv_8(output_1)
shortcut = self.norm_8(shortcut)
output_2 = torch.add(c, shortcut)
output_2 = F.relu(output_2)
#Block 3
a = self.conv_9(output_2)
a = self.norm_9(a)
a = F.relu(a)
b = self.conv_10(a)
b = self.norm_10(b)
b = F.relu(b)
c = self.conv_11(b)
c = self.norm_11(c)
# shortcut = self.conv_12(output_2)
shortcut = self.norm_12(shortcut)
output_3 = torch.add(c, shortcut)
output_3 = F.relu(output_3)
logits = self.classifier(output_3.mean((2,)))
res = self.log_softmax(logits)
return res