|
import torch |
|
import torch.nn.functional as F |
|
import os |
|
import argparse |
|
from tqdm import trange |
|
from transformers import GPT2LMHeadModel |
|
|
|
|
|
def is_word(word): |
|
for item in list(word): |
|
if item not in 'qwertyuiopasdfghjklzxcvbnm': |
|
return False |
|
return True |
|
|
|
|
|
def _is_chinese_char(char): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cp = ord(char) |
|
if ((cp >= 0x4E00 and cp <= 0x9FFF) or |
|
(cp >= 0x3400 and cp <= 0x4DBF) or |
|
(cp >= 0x20000 and cp <= 0x2A6DF) or |
|
(cp >= 0x2A700 and cp <= 0x2B73F) or |
|
(cp >= 0x2B740 and cp <= 0x2B81F) or |
|
(cp >= 0x2B820 and cp <= 0x2CEAF) or |
|
(cp >= 0xF900 and cp <= 0xFAFF) or |
|
(cp >= 0x2F800 and cp <= 0x2FA1F)): |
|
return True |
|
|
|
return False |
|
|
|
|
|
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): |
|
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering |
|
Args: |
|
logits: logits distribution shape (vocabulary size) |
|
top_k > 0: keep only top k tokens with highest probability (top-k filtering). |
|
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). |
|
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) |
|
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 |
|
""" |
|
assert logits.dim() == 1 |
|
top_k = min(top_k, logits.size(-1)) |
|
if top_k > 0: |
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits[indices_to_remove] = filter_value |
|
|
|
if top_p > 0.0: |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
|
logits[indices_to_remove] = filter_value |
|
return logits |
|
|
|
|
|
def sample_sequence(model, context, length, n_ctx, tokenizer, temperature=1.0, top_k=30, top_p=0.0, repitition_penalty=1.0, |
|
device='cpu'): |
|
context = torch.tensor(context, dtype=torch.long, device=device) |
|
context = context.unsqueeze(0) |
|
generated = context |
|
with torch.no_grad(): |
|
for _ in trange(length): |
|
inputs = {'input_ids': generated[0][-(n_ctx - 1):].unsqueeze(0)} |
|
outputs = model( |
|
**inputs) |
|
next_token_logits = outputs[0][0, -1, :] |
|
for id in set(generated): |
|
next_token_logits[id] /= repitition_penalty |
|
next_token_logits = next_token_logits / temperature |
|
next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf') |
|
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) |
|
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) |
|
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1) |
|
return generated.tolist()[0] |
|
|
|
|
|
def fast_sample_sequence(model, context, length, temperature=1.0, top_k=30, top_p=0.0, device='cpu'): |
|
inputs = torch.LongTensor(context).view(1, -1).to(device) |
|
if len(context) > 1: |
|
_, past = model(inputs[:, :-1], None)[:2] |
|
prev = inputs[:, -1].view(1, -1) |
|
else: |
|
past = None |
|
prev = inputs |
|
generate = [] + context |
|
with torch.no_grad(): |
|
for i in trange(length): |
|
output = model(prev, past=past) |
|
output, past = output[:2] |
|
output = output[-1].squeeze(0) / temperature |
|
filtered_logits = top_k_top_p_filtering(output, top_k=top_k, top_p=top_p) |
|
next_token = torch.multinomial(torch.softmax(filtered_logits, dim=-1), num_samples=1) |
|
generate.append(next_token.item()) |
|
prev = next_token.view(1, 1) |
|
return generate |
|
|
|
|
|
|
|
def generate(n_ctx, model, context, length, tokenizer, temperature=1, top_k=0, top_p=0.0, repitition_penalty=1.0, device='cpu', |
|
is_fast_pattern=False): |
|
if is_fast_pattern: |
|
return fast_sample_sequence(model, context, length, temperature=temperature, top_k=top_k, top_p=top_p, |
|
device=device) |
|
else: |
|
return sample_sequence(model, context, length, n_ctx, tokenizer=tokenizer, temperature=temperature, top_k=top_k, top_p=top_p, |
|
repitition_penalty=repitition_penalty, device=device) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='生成设备') |
|
parser.add_argument('--length', default=-1, type=int, required=False, help='生成长度') |
|
parser.add_argument('--batch_size', default=1, type=int, required=False, help='生成的batch size') |
|
parser.add_argument('--nsamples', default=10, type=int, required=False, help='生成几个样本') |
|
parser.add_argument('--temperature', default=1, type=float, required=False, help='生成温度') |
|
parser.add_argument('--topk', default=8, type=int, required=False, help='最高几选一') |
|
parser.add_argument('--topp', default=0, type=float, required=False, help='最高积累概率') |
|
parser.add_argument('--model_config', default='./model_config_small.json', type=str, required=False, |
|
help='模型参数') |
|
parser.add_argument('--tokenizer_path', default='./vocab_small.txt', type=str, required=False, help='词表路径') |
|
parser.add_argument('--model_path', default='./', type=str, required=False, help='模型路径') |
|
parser.add_argument('--prefix', default='萧炎', type=str, required=False, help='生成文章的开头') |
|
parser.add_argument('--no_wordpiece', action='store_true', help='不做word piece切词') |
|
parser.add_argument('--segment', action='store_true', help='中文以词为单位') |
|
parser.add_argument('--fast_pattern', action='store_true', help='采用更加快的方式生成文本') |
|
parser.add_argument('--save_samples', action='store_true', help='保存产生的样本') |
|
parser.add_argument('--save_samples_path', default='.', type=str, required=False, help="保存样本的路径") |
|
parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False) |
|
|
|
args = parser.parse_args() |
|
print('args:\n' + args.__repr__()) |
|
|
|
if args.segment: |
|
from tokenizations import tokenization_bert_word_level as tokenization_bert |
|
else: |
|
from tokenizations import tokenization_bert |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.device |
|
length = args.length |
|
batch_size = args.batch_size |
|
nsamples = args.nsamples |
|
temperature = args.temperature |
|
topk = args.topk |
|
topp = args.topp |
|
repetition_penalty = args.repetition_penalty |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
tokenizer = tokenization_bert.BertTokenizer(vocab_file=args.tokenizer_path) |
|
model = GPT2LMHeadModel.from_pretrained(args.model_path) |
|
model.to(device) |
|
model.eval() |
|
|
|
n_ctx = model.config.n_ctx |
|
|
|
if length == -1: |
|
length = model.config.n_ctx |
|
if args.save_samples: |
|
if not os.path.exists(args.save_samples_path): |
|
os.makedirs(args.save_samples_path) |
|
samples_file = open(args.save_samples_path + '/samples.txt', 'w', encoding='utf8') |
|
while True: |
|
raw_text = args.prefix |
|
context_tokens = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(raw_text)) |
|
generated = 0 |
|
for _ in range(nsamples // batch_size): |
|
out = generate( |
|
n_ctx=n_ctx, |
|
model=model, |
|
context=context_tokens, |
|
length=length, |
|
is_fast_pattern=args.fast_pattern, tokenizer=tokenizer, |
|
temperature=temperature, top_k=topk, top_p=topp, repitition_penalty=repetition_penalty, device=device |
|
) |
|
for i in range(batch_size): |
|
generated += 1 |
|
text = tokenizer.convert_ids_to_tokens(out) |
|
for i, item in enumerate(text[:-1]): |
|
if is_word(item) and is_word(text[i + 1]): |
|
text[i] = item + ' ' |
|
for i, item in enumerate(text): |
|
if item == '[MASK]': |
|
text[i] = '' |
|
elif item == '[CLS]': |
|
text[i] = '\n\n' |
|
elif item == '[SEP]': |
|
text[i] = '\n' |
|
info = "=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40 + "\n" |
|
print(info) |
|
text = ''.join(text).replace('##', '').strip() |
|
print(text) |
|
if args.save_samples: |
|
samples_file.write(info) |
|
samples_file.write(text) |
|
samples_file.write('\n') |
|
samples_file.write('=' * 90) |
|
samples_file.write('\n' * 2) |
|
print("=" * 80) |
|
if generated == nsamples: |
|
|
|
if args.save_samples: |
|
samples_file.close() |
|
break |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |