Spaces:
Runtime error
Runtime error
from time import time | |
from io import BytesIO | |
import torch | |
import streamlit as st | |
import streamlit.components.v1 as components | |
import numpy as np | |
import torch | |
import logging | |
from os import environ | |
from transformers import OwlViTProcessor, OwlViTForObjectDetection | |
from bot import Bot, Message | |
from parse import parse | |
from clickhouse_connect import get_client | |
from classifier import Classifier, prompt2vec, tune, SplitLayer | |
from query_model import simple_query, topk_obj_query, rev_query | |
from card_model import card, obj_card, style | |
from box_utils import postprocess | |
environ["TOKENIZERS_PARALLELISM"] = "true" | |
OBJ_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_objects" | |
IMG_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_images" | |
MODEL_ID = "google/owlvit-base-patch32" | |
DIMS = 512 | |
qtime = 0 | |
def build_model(name="google/owlvit-base-patch32"): | |
"""Model builder function | |
Args: | |
name (str, optional): Name for HuggingFace OwlViT model. Defaults to "google/owlvit-base-patch32". | |
Returns: | |
(model, processor): OwlViT model and its processor for both image and text | |
""" | |
device = "cpu" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
model = OwlViTForObjectDetection.from_pretrained(name).to(device) | |
processor = OwlViTProcessor.from_pretrained(name) | |
return model, processor | |
def init_owlvit(): | |
"""Initialize OwlViT Model | |
Returns: | |
model, processor | |
""" | |
model, processor = build_model(MODEL_ID) | |
return model, processor | |
def init_db(): | |
"""Initialize the Database Connection | |
Returns: | |
meta_field: Meta field that records if an image is viewed or not | |
client: Database connection object | |
""" | |
meta = [] | |
r = parse("{http_pre}://{host}:{port}", st.secrets["DB_URL"]) | |
client = get_client( | |
host=r['host'], port=r['port'], user=st.secrets["USER"], password=st.secrets["PASSWD"] | |
) | |
return meta, client | |
def refresh_index(): | |
"""Clean the session""" | |
del st.session_state["meta"] | |
st.session_state.meta = [] | |
st.session_state.query_num = 0 | |
logging.info(f"Refresh for '{st.session_state.meta}'") | |
# Need to clear singleton function with streamlit API | |
init_db.clear() | |
# refresh session states | |
st.session_state.meta, st.session_state.index = init_db() | |
if "clf" in st.session_state: | |
del st.session_state.clf | |
if "xq" in st.session_state: | |
del st.session_state.xq | |
if "topk_img_id" in st.session_state: | |
del st.session_state.topk_img_id | |
def query(xq, exclude_list=None): | |
"""Query matched w.r.t a given vector | |
In this part, we will retrieve A LOT OF data from the server, | |
including TopK boxes and their embeddings, the counterpart of non-TopK boxes in TopK images. | |
Args: | |
xq (numpy.ndarray or list of floats): Query vector | |
Returns: | |
matches: list of Records object. Keys referrring to selected columns group by images. | |
Exclude the user's viewlist. | |
img_matches: list of Records object. Containing other non-TopK but hit objects among TopK images. | |
side_matches: list of Records object. Containing REAL TopK objects disregard the user's view history | |
""" | |
attempt = 0 | |
xq = xq | |
xq = xq / np.linalg.norm(xq, axis=-1, ord=2, keepdims=True) | |
status_bar = [st.empty(), st.empty()] | |
status_bar[0].write("Retrieving Another TopK Images...") | |
pbar = status_bar[1].progress(0) | |
while attempt < 3: | |
try: | |
matches = topk_obj_query( | |
st.session_state.index, | |
xq, | |
IMG_DB_NAME, | |
OBJ_DB_NAME, | |
exclude_list=exclude_list, | |
topk=5000, | |
) | |
img_ids = [r["img_id"] for r in matches] | |
if "topk_img_id" not in st.session_state: | |
st.session_state.topk_img_id = img_ids | |
status_bar[0].write("Retrieving TopK Images...") | |
pbar.progress(25) | |
o_matches = rev_query( | |
st.session_state.index, | |
xq, | |
st.session_state.topk_img_id, | |
IMG_DB_NAME, | |
OBJ_DB_NAME, | |
thresh=0.1, | |
) | |
status_bar[0].write("Retrieving TopKs Objects...") | |
pbar.progress(50) | |
side_matches = simple_query( | |
st.session_state.index, | |
xq, | |
IMG_DB_NAME, | |
OBJ_DB_NAME, | |
thresh=-1, | |
topk=5000, | |
) | |
status_bar[0].write("Retrieving Non-TopK in Another TopK Images...") | |
pbar.progress(75) | |
if len(img_ids) > 0: | |
img_matches = rev_query( | |
st.session_state.index, | |
xq, | |
img_ids, | |
IMG_DB_NAME, | |
OBJ_DB_NAME, | |
thresh=0.1, | |
) | |
else: | |
img_matches = [] | |
status_bar[0].write("DONE!") | |
pbar.progress(100) | |
break | |
except Exception as e: | |
# force reload if we have trouble on connections or something else | |
logging.warning(str(e)) | |
st.session_state.meta, st.session_state.index = init_db() | |
attempt += 1 | |
matches = [] | |
_ = [s.empty() for s in status_bar] | |
if len(matches) == 0: | |
logging.error(f"No matches found for '{OBJ_DB_NAME}'") | |
return matches, img_matches, side_matches, o_matches | |
def init_random_query(): | |
"""Initialize a random query vector | |
Returns: | |
xq: a random vector | |
""" | |
xq = np.random.rand(1, DIMS) | |
xq /= np.linalg.norm(xq, keepdims=True, axis=-1) | |
return xq | |
def submit(meta): | |
"""Tune the model w.r.t given score from user.""" | |
# Only updating the meta if the train button is pressed | |
st.session_state.meta.extend(meta) | |
st.session_state.step += 1 | |
matches = st.session_state.matched_boxes | |
X, y = list( | |
zip( | |
*( | |
( | |
v[0], | |
st.session_state.text_prompts.index(st.session_state[f"label-{i}"]), | |
) | |
for i, v in matches.items() | |
) | |
) | |
) | |
st.session_state.xq = tune( | |
st.session_state.clf, X, y, iters=int(st.session_state.iters) | |
) | |
( | |
st.session_state.matches, | |
st.session_state.img_matches, | |
st.session_state.side_matches, | |
st.session_state.o_matches, | |
) = query(st.session_state.xq, st.session_state.meta) | |
# st.set_page_config(layout="wide") | |
# To hack the streamlit style we define our own style. | |
# Boxes are drawn in SVGs. | |
st.write(style(), unsafe_allow_html=True) | |
bot = Bot(app_name="HF OwlViT", enabled=True, bot_key=st.secrets['BOT_KEY']) | |
try: | |
with st.spinner("Connecting DB..."): | |
st.session_state.meta, st.session_state.index = init_db() | |
with st.spinner("Loading Models..."): | |
# Initialize model | |
model, tokenizer = init_owlvit() | |
# If its a fresh start... (query not set) | |
if "xq" not in st.session_state: | |
with st.container(): | |
st.title("Object Detection Safari") | |
start = [st.empty() for _ in range(8)] | |
start[0].info( | |
""" | |
We extracted boxes from **287,104** images in COCO Dataset, including its train / val / test / | |
unlabeled images, collecting **165,371,904 boxes** which are then filtered with common prompts. | |
You can search with almost any words or phrases you can think of. Please enjoy your journey of | |
an adventure to COCO. | |
""" | |
) | |
prompt = start[1].text_input( | |
"Prompt:", | |
value="", | |
placeholder="Examples: football, billboard, stop sign, watermark ...", | |
) | |
with start[2].container(): | |
st.write( | |
"You can search with multiple keywords. Plese separate with commas but with no space." | |
) | |
st.write("For example: `cat,dog,tree`") | |
st.markdown( | |
""" | |
<p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p> | |
""", | |
unsafe_allow_html=True, | |
) | |
upld_model = start[4].file_uploader( | |
"Or you can upload your previous run!", type="onnx" | |
) | |
upld_btn = start[5].button( | |
"Use Loaded Weights", disabled=upld_model is None, on_click=refresh_index | |
) | |
with start[3]: | |
col = st.columns(8) | |
has_no_prompt = len(prompt) == 0 and upld_model is None | |
prompt_xq = col[6].button( | |
"Prompt", disabled=len(prompt) == 0, on_click=refresh_index | |
) | |
random_xq = col[7].button( | |
"Random", disabled=not has_no_prompt, on_click=refresh_index | |
) | |
matches = [] | |
img_matches = [] | |
if random_xq: | |
xq = init_random_query() | |
st.session_state.xq = xq | |
prompt = "unknown" | |
st.session_state.text_prompts = prompt.split(",") + ["none"] | |
_ = [elem.empty() for elem in start] | |
t0 = time() | |
( | |
st.session_state.matches, | |
st.session_state.img_matches, | |
st.session_state.side_matches, | |
st.session_state.o_matches, | |
) = query(st.session_state.xq, st.session_state.meta) | |
t1 = time() | |
qtime = (t1 - t0) * 1000 | |
elif prompt_xq or upld_btn: | |
if upld_model is not None: | |
import onnx | |
from onnx import numpy_helper | |
_model = onnx.load(upld_model) | |
st.session_state.text_prompts = [ | |
node.name for node in _model.graph.output | |
] + ["none"] | |
weights = _model.graph.initializer | |
xq = numpy_helper.to_array(weights[0]).T | |
assert ( | |
xq.shape[0] == len(st.session_state.text_prompts) - 1 | |
and xq.shape[1] == DIMS | |
) | |
st.session_state.xq = xq | |
_ = [elem.empty() for elem in start] | |
else: | |
logging.info(f"Input prompt is {prompt}") | |
st.session_state.text_prompts = prompt.split(",") + ["none"] | |
input_ids, xq = prompt2vec( | |
st.session_state.text_prompts[:-1], model, tokenizer | |
) | |
st.session_state.xq = xq | |
_ = [elem.empty() for elem in start] | |
t0 = time() | |
( | |
st.session_state.matches, | |
st.session_state.img_matches, | |
st.session_state.side_matches, | |
st.session_state.o_matches, | |
) = query(st.session_state.xq, st.session_state.meta) | |
t1 = time() | |
qtime = (t1 - t0) * 1000 | |
# If its not a fresh start (query is set) | |
if "xq" in st.session_state: | |
o_matches = st.session_state.o_matches | |
side_matches = st.session_state.side_matches | |
img_matches = st.session_state.img_matches | |
matches = st.session_state.matches | |
# initialize classifier | |
if "clf" not in st.session_state: | |
st.session_state.clf = Classifier(st.session_state.index, OBJ_DB_NAME, st.session_state.xq) | |
st.session_state.step = 0 | |
if qtime > 0: | |
st.info( | |
"Query done in {0:.2f} ms and returned {1:d} images with {2:d} boxes".format( | |
qtime, | |
len(matches), | |
sum( | |
[ | |
len(m["box_id"]) + len(im["box_id"]) | |
for m, im in zip(matches, img_matches) | |
] | |
), | |
) | |
) | |
lnprob = torch.nn.Linear(st.session_state.xq.shape[1], st.session_state.xq.shape[0], bias=False) | |
lnprob.weight = torch.nn.Parameter(st.session_state.clf.weight) | |
# export the model into executable ONNX | |
st.session_state.dnld_model = BytesIO() | |
torch.onnx.export( | |
torch.nn.Sequential(lnprob, SplitLayer()), | |
torch.zeros([1, len(st.session_state.xq[0])]), | |
st.session_state.dnld_model, | |
input_names=["input"], | |
output_names=st.session_state.text_prompts[:-1], | |
) | |
dnld_nam = st.text_input( | |
"Download Name:", | |
f'{("_".join([i.replace(" ", "-") for i in st.session_state.text_prompts[:-1]]) if "text_prompts" in st.session_state else "model")}.onnx', | |
max_chars=50, | |
) | |
dnld_btn = st.download_button( | |
"Download your classifier!", st.session_state.dnld_model, dnld_nam | |
) | |
# build up a sidebar to display REAL TopK in DB | |
# this will change during user's finetune. But sometime it would lead to bad results | |
side_bar_len = min(240 // len(st.session_state.text_prompts), 120) | |
with st.sidebar: | |
with st.expander("Top-K Images"): | |
with st.container(): | |
boxes_w_img, _ = postprocess( | |
o_matches, st.session_state.text_prompts, o_matches, | |
agnostic_ratio=1-0.6**(st.session_state.step+1), | |
class_ratio=1-0.2**(st.session_state.step+1) | |
) | |
boxes_w_img = sorted(boxes_w_img, key=lambda x: x[4], reverse=True) | |
for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img: | |
args = img_url, img_w, img_h, boxes | |
st.write(card(*args), unsafe_allow_html=True) | |
with st.expander("Top-K Objects", expanded=True): | |
side_cols = st.columns(len(st.session_state.text_prompts[:-1])) | |
for _cols, m in zip(side_cols, side_matches): | |
with _cols.container(): | |
for cx, cy, w, h, logit, img_url, img_w, img_h in zip( | |
m["cx"], | |
m["cy"], | |
m["w"], | |
m["h"], | |
m["logit"], | |
m["img_url"], | |
m["img_w"], | |
m["img_h"], | |
): | |
st.write( | |
"{:s}: {:.4f}".format( | |
st.session_state.text_prompts[m["label"]], logit | |
) | |
) | |
_html = obj_card( | |
img_url, img_w, img_h, cx, cy, w, h, dst_len=side_bar_len | |
) | |
components.html(_html, side_bar_len, side_bar_len) | |
with st.container(): | |
# Here let the user interact with batch labeling | |
with st.form("batch", clear_on_submit=False): | |
col = st.columns([1, 9]) | |
# If there is nothing to show about | |
if len(matches) <= 0: | |
st.warning( | |
"Oops! We didn't find anything relevant to your query! Pleas try another one :/" | |
) | |
else: | |
st.session_state.iters = st.slider( | |
"Number of Iterations to Update", | |
min_value=0, | |
max_value=10, | |
step=1, | |
value=2, | |
) | |
# No matter what happened the user wants a way back | |
col[1].form_submit_button("Choose a new prompt", on_click=refresh_index) | |
# If there are things to show | |
if len(matches) > 0: | |
with st.container(): | |
prompt_labels = st.session_state.text_prompts | |
# Post processing boxes regarding to their score, intersection | |
boxes_w_img, meta = postprocess( | |
matches, st.session_state.text_prompts, img_matches, | |
agnostic_ratio=1-0.6**(st.session_state.step+1), | |
class_ratio=1-0.2**(st.session_state.step+1) | |
) | |
# Sort the result according to their relavancy | |
boxes_w_img = sorted(boxes_w_img, key=lambda x: x[4], reverse=True) | |
st.session_state.matched_boxes = {} | |
# For each images in the retrieved images, DISPLAY | |
for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img: | |
# prepare inputs for training | |
st.session_state.matched_boxes.update({b[0]: b for b in boxes}) | |
args = img_url, img_w, img_h, boxes | |
# display boxes | |
with st.expander( | |
"{:s}: {:.4f}".format(img_id, img_score), expanded=True | |
): | |
ind_b = 0 | |
# 4 columns: (img, obj, obj, obj) | |
img_row = st.columns([4, 2, 2, 2]) | |
img_row[0].write(card(*args), unsafe_allow_html=True) | |
# crop objects out of the original image | |
for b in boxes: | |
_id, cx, cy, w, h, label, logit, is_selected = b[:8] | |
with img_row[1 + ind_b % 3].container(): | |
st.write("{:s}: {:.4f}".format(label, logit)) | |
# quite hacky: with streamlit components API | |
_html = obj_card( | |
img_url, img_w, img_h, *b[1:5], dst_len=120 | |
) | |
components.html(_html, 120, 120) | |
# the user will choose the right label of the given object | |
st.selectbox( | |
"Class", | |
prompt_labels, | |
index=prompt_labels.index(label), | |
key=f"label-{_id}", | |
) | |
ind_b += 1 | |
col[0].form_submit_button("Train!", on_click=lambda: submit(meta)) | |
except Exception as e: | |
msg = Message() | |
msg.content = str(e.with_traceback(None)) | |
msg.type_hint = str(type(e).__name__) | |
bot.incident(msg) | |