Spaces:
Runtime error
Runtime error
xuyingli
commited on
Commit
·
6cdc778
1
Parent(s):
9716a19
Update app.py
Browse files
app.py
CHANGED
@@ -314,7 +314,7 @@ if 'xq' not in st.session_state:
|
|
314 |
|
315 |
st.session_state.db_name_ref = 'default.esm_protein'
|
316 |
if option == function_list[0]:
|
317 |
-
sequence = st.text_input('protein sequence', '')
|
318 |
if st.button('Cas9 Enzyme'):
|
319 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
320 |
elif st.button('PETase'):
|
@@ -330,7 +330,7 @@ if 'xq' not in st.session_state:
|
|
330 |
(Rao et al. 2020) The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.""")
|
331 |
st.session_state['xq'] = st.session_state.model
|
332 |
elif option == function_list[1]:
|
333 |
-
sequence = st.text_input('protein sequence', '')
|
334 |
st.write('Try an example:')
|
335 |
if st.button('Cas9 Enzyme'):
|
336 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
@@ -391,7 +391,7 @@ else:
|
|
391 |
|
392 |
st.session_state.db_name_ref = 'default.esm_protein'
|
393 |
if option == 'self-contact prediction':
|
394 |
-
sequence = st.text_input('protein sequence', '')
|
395 |
if st.button('Cas9 Enzyme'):
|
396 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
397 |
elif st.button('PETase'):
|
@@ -406,7 +406,7 @@ else:
|
|
406 |
"""<span style="word-wrap:break-word;">Contact prediction is based on a logistic regression over the model's attention maps. This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners. (Rao et al. 2020)The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.</span>
|
407 |
""", unsafe_allow_html=True)
|
408 |
elif option == 'search the database for similar proteins':
|
409 |
-
sequence = st.text_input('protein sequence', '')
|
410 |
st.write('Try an example:')
|
411 |
if st.button('Cas9 Enzyme'):
|
412 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
|
|
314 |
|
315 |
st.session_state.db_name_ref = 'default.esm_protein'
|
316 |
if option == function_list[0]:
|
317 |
+
sequence = st.text_input('protein sequence(Capital letters only)', '')
|
318 |
if st.button('Cas9 Enzyme'):
|
319 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
320 |
elif st.button('PETase'):
|
|
|
330 |
(Rao et al. 2020) The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.""")
|
331 |
st.session_state['xq'] = st.session_state.model
|
332 |
elif option == function_list[1]:
|
333 |
+
sequence = st.text_input('protein sequence(Capital letters only)', '')
|
334 |
st.write('Try an example:')
|
335 |
if st.button('Cas9 Enzyme'):
|
336 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
|
|
391 |
|
392 |
st.session_state.db_name_ref = 'default.esm_protein'
|
393 |
if option == 'self-contact prediction':
|
394 |
+
sequence = st.text_input('protein sequence(Capital letters only)', '')
|
395 |
if st.button('Cas9 Enzyme'):
|
396 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
397 |
elif st.button('PETase'):
|
|
|
406 |
"""<span style="word-wrap:break-word;">Contact prediction is based on a logistic regression over the model's attention maps. This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners. (Rao et al. 2020)The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.</span>
|
407 |
""", unsafe_allow_html=True)
|
408 |
elif option == 'search the database for similar proteins':
|
409 |
+
sequence = st.text_input('protein sequence(Capital letters only)', '')
|
410 |
st.write('Try an example:')
|
411 |
if st.button('Cas9 Enzyme'):
|
412 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|