Spaces:
Runtime error
Runtime error
import json | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
##### MODEL AND TOKENIZER SETUP ###### | |
model_id = "mylesmharrison/gpt2-moviedialog" | |
model = AutoModelForCausalLM.from_pretrained(model_id, from_tf=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
##### TEXT GENERATION (INFERENCE) ###### | |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens): | |
# Get the model and tokenizer, and tokenize the user text. | |
model_inputs = tokenizer([user_text], return_tensors="pt") | |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer | |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=float(temperature), | |
top_k=top_k | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Pull the generated text from the streamer, and update the model output. | |
model_output = "" | |
for new_text in streamer: | |
model_output += new_text | |
yield model_output | |
return model_output | |
##### HELPER FUNCTION AND TEXT DATA ###### | |
def reset_textbox(): | |
return gr.update(value='') | |
# Read in the text data for examples | |
with open("gradio_data.json", "r") as f: | |
gr_data = json.loads(f.read()) | |
# Read in the markdown data for the header | |
with open("README.md", "r") as f: | |
desc = ''.join(f.readlines()[11:]) | |
theme = gr.themes.Base() | |
##### UI RENDER ###### | |
with gr.Blocks(theme=theme) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
### DESCRIPTION | |
gr.Markdown(desc) | |
with gr.Row(): | |
with gr.Column(): | |
# INPUT FIELD | |
user_text = gr.Textbox( | |
placeholder="JOHN: I love you.", | |
label="User input", | |
scale=4, | |
lines=10 | |
) | |
# SUBMIT BUTTON | |
with gr.Row(): | |
with gr.Column(): | |
button_submit = gr.Button(value="Submit") | |
with gr.Column(): | |
stop = gr.Button(value="Stop") | |
### TEXT EXAMPLES | |
gr.Examples(gr_data['examples'],[user_text]) | |
with gr.Column(): | |
with gr.Row(scale=4): | |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False) | |
with gr.Row(scale=1): | |
### INFERENCE CONTROLS | |
max_new_tokens = gr.Slider( | |
minimum=1, maximum=500, value=150, step=10, interactive=True, label="Max Tokens", | |
) | |
top_p = gr.Slider( | |
minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p", | |
) | |
top_k = gr.Slider( | |
minimum=1, maximum=50, value=20, step=1, interactive=True, label="Top-k", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, maximum=5.0, value=1.1, step=0.1, interactive=True, label="Temperature", | |
) | |
# RUN | |
text_event = user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) | |
button_event = button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[text_event, button_event]) | |
demo.queue(max_size=32).launch(enable_queue=True) |