brandfolder_image_upload / content_generator.py
mylesai's picture
Update content_generator.py
8242f8f verified
raw
history blame
2.47 kB
import pandas as pd
import swifter
def get_website_layout_prompt(page, instructions, pov, element, csv_prompt=None):
if csv_prompt:
return csv_prompt
else:
prompt = f'''
% You are a website designer creating text for the {page} of the website
% Goal: Create content for the Element according to the Writing Guidelines and Point of View. Only output the edited content.
% Writing Guidelines:
```{instructions}```
% Point of View:
```{pov}```
% Element:
```{element}```
% Instructions:
Step 1 - First write content for the element according to the Writing Guidelines and Point of View.
Step 2 - Add relevant company information from the context to the content to make it more personalized and detailed
Step 3 - If the Writing Guidelines mention a specific word/character count, use Python to calculate word count of your response to Step 1.
If the Step 1 word count exceeds the Writing Guidelines word count, edit the content so that it adheres to the Writing Guidelines.
Step 4 - Edit the content so that it adheres to the Point of View if applicable.
Step 5 - Only output the edited content.
'''
return prompt
def get_website_content(row, query_engine):
# gets website content based on spreadsheet
try:
if pd.notna(row['Suggested Word/Character Count']):
if row['Suggested Word/Character Count'] != 'Not applicable for SEO':
page = row['Page Type']
instructions = row['Suggested Word/Character Count']
pov = row['Point of View']
element = row['Section Piece (Element)']
if pd.notna(row['Prompt']):
prompt = row['Prompt']
response = query_engine.query(get_website_layout_prompt(page, instructions, pov, element, csv_prompt=prompt))
else:
response = query_engine.query(get_website_layout_prompt(page, instructions, pov, element))
print(response)
return response.response
else:
return row['Content']
else:
return row['Content']
except:
return 'Could not Process this row'
def get_content_csv(csv_file, query_engine):
df = pd.read_csv(csv_file.name)
df['Content'] = df.swifter.apply(lambda row: get_website_content(row, query_engine), axis=1)
return df