Upload ascr.py
Browse files
ascr.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# %%
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
# import random as rn
|
6 |
+
# import os
|
7 |
+
import tensorflow as tf
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
# tf.config.experimental.set_visible_devices([], 'GPU')
|
11 |
+
|
12 |
+
|
13 |
+
#%%
|
14 |
+
def parse_image(image):
|
15 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
16 |
+
image = cv2.resize(image, (100, 100))
|
17 |
+
image = image.astype(np.float32)
|
18 |
+
image = image / 255.0
|
19 |
+
image = np.expand_dims(image, axis=0)
|
20 |
+
image = np.expand_dims(image, axis=-1)
|
21 |
+
return image
|
22 |
+
|
23 |
+
#%%
|
24 |
+
|
25 |
+
def cnn(input_shape, output_shape):
|
26 |
+
num_classes = output_shape[0]
|
27 |
+
dropout_seed = 708090
|
28 |
+
kernel_seed = 42
|
29 |
+
|
30 |
+
model = tf.keras.models.Sequential([
|
31 |
+
tf.keras.layers.Conv2D(16, 3, activation='relu', input_shape=input_shape, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
32 |
+
tf.keras.layers.MaxPooling2D(),
|
33 |
+
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
34 |
+
tf.keras.layers.Conv2D(32, 5, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
35 |
+
tf.keras.layers.MaxPooling2D(),
|
36 |
+
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
37 |
+
tf.keras.layers.Conv2D(64, 10, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
38 |
+
tf.keras.layers.MaxPooling2D(),
|
39 |
+
tf.keras.layers.Dropout(0.1, seed=dropout_seed),
|
40 |
+
tf.keras.layers.Flatten(),
|
41 |
+
tf.keras.layers.Dense(128, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
42 |
+
tf.keras.layers.Dropout(0.2, seed=dropout_seed),
|
43 |
+
tf.keras.layers.Dense(16, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
|
44 |
+
tf.keras.layers.Dropout(0.2, seed=dropout_seed),
|
45 |
+
tf.keras.layers.Dense(num_classes, activation='sigmoid', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed))
|
46 |
+
])
|
47 |
+
|
48 |
+
return model
|
49 |
+
|
50 |
+
#%%
|
51 |
+
model = cnn((100, 100, 1), (1,))
|
52 |
+
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), optimizer='Adam', metrics='accuracy')
|
53 |
+
|
54 |
+
model.load_weights('weights.h5')
|
55 |
+
|
56 |
+
#%%
|
57 |
+
def segment(image):
|
58 |
+
image = parse_image(image)
|
59 |
+
# print(image.shape)
|
60 |
+
output = model.predict(image)
|
61 |
+
# print(output)
|
62 |
+
labels = {
|
63 |
+
"farsi" : 1-float(output),
|
64 |
+
"ruqaa" : float(output)
|
65 |
+
}
|
66 |
+
return labels
|
67 |
+
|
68 |
+
iface = gr.Interface(fn=segment, inputs="image", outputs="label").launch()
|