Spaces:
Sleeping
Sleeping
import json | |
import gradio as gr | |
from google import genai | |
import pandas as pd | |
import os | |
import re | |
import concurrent.futures | |
from dotenv import load_dotenv | |
# Load environment variables from .env file | |
load_dotenv() | |
# Initialize the GenAI client with the API key | |
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY")) | |
def analyze_single_video(video_path): | |
"""Analyzes a single video for emotions using the GenAI model.""" | |
prompt = """ | |
Detect emotion from this video and classify into 3 categories: happy, sad, normal. Return only JSON format without any extra text. | |
Return this JSON schema: | |
{ | |
"Vocal": { | |
"sad_score": (%), | |
"happy_score": (%), | |
"normal_score": (%), | |
"sad_reason": (list of timestamps), | |
"happy_reason": (list of timestamps), | |
"normal_reason": (list of timestamps) | |
}, | |
"Verbal": { | |
"sad_score": (%), | |
"happy_score": (%), | |
"normal_score": (%), | |
"sad_reason": (list of timestamps), | |
"happy_reason": (list of timestamps), | |
"normal_reason": (list of timestamps) | |
}, | |
"Vision": { | |
"sad_score": (%), | |
"happy_score": (%), | |
"normal_score": (%), | |
"sad_reason": (list of timestamps), | |
"happy_reason": (list of timestamps), | |
"normal_reason": (list of timestamps) | |
} | |
} | |
Reasons (sad_reason, happy_reason, normal_reason) should be a list of beginning-ending timestamps. For example: ['0:11-0:14', '0:23-0:25', '0:27-0:29'] | |
""" | |
try: | |
with open(video_path, 'rb') as video_file: | |
video_bytes = video_file.read() | |
print(f"Processing: {video_path}") | |
response = client.models.generate_content( | |
model="gemini-2.0-flash", | |
contents=[{"text": prompt}, {"inline_data": {"data": video_bytes, "mime_type": "video/mp4"}}], | |
config={"http_options": {"timeout": 60000}} | |
) | |
response_text = response.text.strip() | |
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', response_text) | |
json_string = json_match.group(1).strip() if json_match else response_text | |
result = json.loads(json_string) | |
return result | |
except Exception as e: | |
print(f"Error processing {video_path}: {e}") | |
return None | |
def process_multiple_videos(video_paths): | |
"""Processes multiple videos and stores the emotion analysis results.""" | |
records = [] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
results = list(executor.map(analyze_single_video, video_paths)) | |
# Process results and organize them into a DataFrame | |
for video_path, result in zip(video_paths, results): | |
if result is None: | |
continue # Skip invalid results | |
video_title = os.path.basename(video_path) | |
print(f"Processing result for {video_title}: {result}") | |
try: | |
for category in ['Verbal', 'Vocal', 'Vision']: | |
for emotion in ['normal', 'happy', 'sad']: | |
score = result[category].get(f"{emotion}_score", 0) | |
reasons = result[category].get(f"{emotion}_reason", []) | |
records.append({ | |
'title': video_title, | |
'category': category, | |
'emotion': emotion, | |
'score': score, | |
'reasons': json.dumps(reasons) # Ensure reasons are serialized as JSON | |
}) | |
except KeyError as e: | |
print(f"Skipping invalid result for {video_title} due to missing key: {e}") | |
# Create a DataFrame and export to CSV and Excel | |
df = pd.DataFrame(records) | |
df.to_csv("emotion_results.csv", index=False) | |
df.to_excel("emotion_results.xlsx", index=False) | |
return df | |
def gradio_interface(video_paths): | |
"""Handles the Gradio interface and video processing.""" | |
# Filter valid .mp4 video files | |
paths = [file.name if hasattr(file, 'name') else file for file in video_paths] | |
paths = [p for p in paths if os.path.isfile(p) and p.endswith(".mp4")] | |
if not paths: | |
raise ValueError("No valid video files were provided.") | |
df = process_multiple_videos(paths) | |
# Save the DataFrame as CSV and return it | |
csv_file = "emotion_results.csv" | |
df.to_csv(csv_file, index=False) | |
return df, csv_file | |
# Gradio interface definition | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.File(file_types=[".mp4"], label="Upload one or more videos", file_count="multiple"), | |
outputs=[gr.DataFrame(), gr.File(label="Download CSV")], | |
title="Batch Video Emotion Analyzer", | |
description="Upload multiple videos to analyze their emotions across verbal, vocal, and visual channels." | |
) | |
# Launch the interface | |
iface.launch(share=True) | |