Stray_Dogs / app.py
mustafa2ak's picture
Update app.py
16726e7 verified
raw
history blame
34.1 kB
"""
resnet_dataset_creator.py - Fixed Dataset Creation Tool for ResNet Fine-tuning
Changes: Removed head extraction, fixed image gallery display
"""
import gradio as gr
import cv2
import numpy as np
import pandas as pd
import json
import shutil
import torch
from pathlib import Path
from typing import List, Dict, Optional, Tuple
from datetime import datetime
from PIL import Image
import zipfile
import gc
# Import required modules
from detection import DogDetector
from tracking import SimpleTracker
from reid import SingleModelReID # Using simplified version
from ultralytics import YOLO
# ========== IMAGE QUALITY ANALYZER (unchanged) ==========
class ImageQualityAnalyzer:
"""Analyze and score image quality for dataset selection"""
def __init__(self):
self.quality_weights = {
'sharpness': 0.3,
'resolution': 0.2,
'brightness': 0.15,
'contrast': 0.15,
'occlusion': 0.2
}
def calculate_sharpness(self, image: np.ndarray) -> float:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
return min(100, laplacian.var())
def calculate_resolution_score(self, image: np.ndarray) -> float:
h, w = image.shape[:2]
pixels = h * w
ideal_pixels = 224 * 224
return min(100, (pixels / ideal_pixels) * 100)
def calculate_brightness_score(self, image: np.ndarray) -> float:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mean_brightness = np.mean(gray)
return 100 - abs(mean_brightness - 127) * 0.78
def calculate_contrast_score(self, image: np.ndarray) -> float:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
contrast = gray.std()
return min(100, contrast * 2)
def detect_occlusion(self, bbox: List[float], frame_shape: Tuple) -> float:
x1, y1, x2, y2 = bbox
h, w = frame_shape[:2]
edge_penalty = 0
if x1 <= 5 or y1 <= 5 or x2 >= w-5 or y2 >= h-5:
edge_penalty = 30
aspect = (x2 - x1) / (y2 - y1)
if aspect < 0.3 or aspect > 3:
edge_penalty += 20
return 100 - edge_penalty
def calculate_overall_quality(self, image: np.ndarray, bbox: List[float],
frame_shape: Tuple) -> float:
scores = {
'sharpness': self.calculate_sharpness(image),
'resolution': self.calculate_resolution_score(image),
'brightness': self.calculate_brightness_score(image),
'contrast': self.calculate_contrast_score(image),
'occlusion': self.detect_occlusion(bbox, frame_shape)
}
total = sum(scores[k] * self.quality_weights[k] for k in scores)
return total
# ========== SMART IMAGE SELECTOR (unchanged) ==========
class SmartImageSelector:
"""Intelligently select best images based on quality and diversity"""
def __init__(self):
self.quality_analyzer = ImageQualityAnalyzer()
self.min_temporal_distance = 10
def select_best_images(self, dog_data: List[Dict], max_images: int = 30,
video_fps: float = 30) -> List[Dict]:
for item in dog_data:
item['quality_score'] = self.quality_analyzer.calculate_overall_quality(
item['crop'], item['bbox'], item['frame'].shape
)
if len(dog_data) <= max_images:
return dog_data
dog_data.sort(key=lambda x: x['quality_score'], reverse=True)
selected = []
selected_frames = set()
selected_indices = set()
for idx, item in enumerate(dog_data):
frame_num = item['frame_num']
too_close = any(
abs(frame_num - f) < self.min_temporal_distance
for f in selected_frames
)
if not too_close and len(selected) < max_images:
selected.append(item)
selected_frames.add(frame_num)
selected_indices.add(idx)
if len(selected) < max_images:
for idx, item in enumerate(dog_data):
if idx not in selected_indices and len(selected) < max_images:
selected.append(item)
selected_indices.add(idx)
return selected[:max_images]
# ========== MAIN DATASET CREATOR - FIXED ==========
class ResNetDatasetCreator:
"""Main application with head extraction removed and gallery display fixed"""
def __init__(self):
# Directories
self.temp_dir = Path("temp_dataset")
self.final_dir = Path("resnet_finetune_dataset")
self.database_dir = Path("permanent_database")
# Components - initialize once
self.detector = DogDetector(device='cuda' if torch.cuda.is_available() else 'cpu')
self.tracker = SimpleTracker()
self.reid = SingleModelReID(device='cuda' if torch.cuda.is_available() else 'cpu')
# REMOVED: self.head_extractor = SimpleHeadExtractor()
self.image_selector = SmartImageSelector()
# Session data - temporary only
self.current_video_path = None
self.current_session = None
self.temp_processed_dogs = {} # Temporary dogs from current video
self.permanent_dogs = {} # Permanently saved dogs
# Create directories
self.temp_dir.mkdir(exist_ok=True)
self.final_dir.mkdir(exist_ok=True)
self.database_dir.mkdir(exist_ok=True)
# Load permanent database
self.load_permanent_database()
def load_permanent_database(self):
"""Load only permanently saved dogs"""
db_file = self.database_dir / "database.json"
if db_file.exists():
with open(db_file, 'r') as f:
data = json.load(f)
self.permanent_dogs = {int(k): v for k, v in data.get('dogs', {}).items()}
print(f"Loaded {len(self.permanent_dogs)} permanently saved dogs")
def save_to_permanent_database(self):
"""Save selected dogs to permanent database"""
# Merge temp dogs into permanent
self.permanent_dogs.update(self.temp_processed_dogs)
# Save metadata
db_file = self.database_dir / "database.json"
data = {
'dogs': {str(k): v for k, v in self.permanent_dogs.items()},
'last_updated': datetime.now().isoformat()
}
with open(db_file, 'w') as f:
json.dump(data, f, indent=2)
# Copy images from temp to permanent
for dog_id in self.temp_processed_dogs:
src_dir = self.temp_dir / f"dog_{dog_id:03d}"
dst_dir = self.database_dir / f"dog_{dog_id:03d}"
if src_dir.exists():
if dst_dir.exists():
shutil.rmtree(dst_dir)
shutil.copytree(src_dir, dst_dir)
print(f"Saved {len(self.temp_processed_dogs)} dogs to permanent database")
def clear_temp_data(self):
"""Clear all temporary data for new video and free memory."""
# Clear temp directory
if self.temp_dir.exists():
shutil.rmtree(self.temp_dir)
self.temp_dir.mkdir()
# Clear temp session data
self.current_video_path = None
self.current_session = None
self.temp_processed_dogs = {}
# Reset ReID (clears in-memory dogs)
self.reid.reset_all()
# πŸ‘‡ ADD THESE TWO LINES FOR MEMORY CLEANUP
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Temporary data cleared and memory released.")
def clear_all_permanent_data(self):
"""Clear entire permanent database"""
if self.database_dir.exists():
shutil.rmtree(self.database_dir)
self.database_dir.mkdir()
self.permanent_dogs = {}
print("All permanent data cleared")
def process_video(self, video_path: str, reid_threshold: float,
max_images_per_dog: int, sample_rate: int) -> Dict:
"""Process video with current settings"""
# Clear previous temp data if new video
if video_path != self.current_video_path:
self.clear_temp_data()
self.current_video_path = video_path
else:
# Re-processing same video - clear and start fresh
self.clear_temp_data()
self.current_video_path = video_path
# Set ReID threshold
self.reid.set_all_thresholds(reid_threshold)
# Storage for dog data
dog_data = {}
# Open video
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_num = 0
processed_frames = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Sample frames
if frame_num % sample_rate == 0:
# Detect dogs
detections = self.detector.detect(frame)
# Update tracking
tracks = self.tracker.update(detections)
# Process each track
for track in tracks:
# Get ReID result
results = self.reid.match_or_register_all(track)
dog_id = results['ResNet50']['dog_id']
confidence = results['ResNet50']['confidence']
if dog_id > 0 and confidence > 0.3:
# Get best detection
detection = None
for det in reversed(track.detections):
if det.image_crop is not None:
detection = det
break
if detection:
if dog_id not in dog_data:
dog_data[dog_id] = []
dog_data[dog_id].append({
'frame': frame.copy(),
'crop': detection.image_crop,
'bbox': detection.bbox,
'frame_num': frame_num,
'reid_confidence': confidence,
'detection_confidence': detection.confidence,
'timestamp': frame_num / fps
})
processed_frames += 1
frame_num += 1
# Yield progress
if frame_num % 30 == 0:
progress = int((frame_num / total_frames) * 100)
yield {'progress': progress, 'status': f"Processing: {progress}%"}
cap.release()
# Select best images for each dog
total_images = 0
new_dogs = {}
for dog_id, images in dog_data.items():
selected = self.image_selector.select_best_images(
images, max_images_per_dog, fps
)
# Save to temp directory only - ONLY FULL BODY IMAGES
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
dog_dir.mkdir(exist_ok=True)
# REMOVED: (dog_dir / 'head').mkdir(exist_ok=True)
saved_count = 0
for idx, img_data in enumerate(selected):
# Save full crop only
full_path = dog_dir / f"frame_{img_data['frame_num']:06d}.jpg"
cv2.imwrite(str(full_path), img_data['crop'])
# REMOVED: Head extraction and saving
saved_count += 1
total_images += saved_count
# Store in temp dogs only
new_dogs[dog_id] = {
'num_images': saved_count,
'avg_confidence': np.mean([d['reid_confidence'] for d in selected]),
'quality_scores': [d['quality_score'] for d in selected]
}
# Update temp dogs (not permanent)
self.temp_processed_dogs = new_dogs
# Save session info
self.current_session = {
'video': video_path,
'timestamp': datetime.now().isoformat(),
'num_dogs': len(new_dogs),
'total_images': total_images,
'reid_threshold': reid_threshold,
'dogs': {str(k): v for k, v in new_dogs.items()}
}
# Save metadata to temp
with open(self.temp_dir / 'session.json', 'w') as f:
json.dump(self.current_session, f, indent=2)
yield {'status': 'complete', 'session': self.current_session}
def get_dog_images(self, dog_id: int, from_permanent: bool = False, max_display: int = None) -> List:
"""Get images for verification - FIXED to show all or specified number of images"""
if from_permanent:
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
else:
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
# Check directly in dog directory (no 'full' subdirectory anymore)
if not dog_dir.exists():
return []
images = []
image_files = sorted(dog_dir.glob("*.jpg"))
# If max_display is specified, limit to that number, otherwise show all
if max_display:
image_files = image_files[:max_display]
for img_path in image_files:
img = cv2.imread(str(img_path))
if img is not None:
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
images.append(img_rgb)
return images
def remove_images_by_selection(self, dog_id: int, selected_indices: List, from_permanent: bool = False):
"""Remove images based on gallery selection"""
if from_permanent:
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
else:
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
if not dog_dir.exists():
return
image_files = sorted(list(dog_dir.glob("*.jpg")))
# Remove selected images
for idx in selected_indices:
if 0 <= idx < len(image_files):
# Remove image
image_files[idx].unlink(missing_ok=True)
def delete_dog(self, dog_id: int, from_permanent: bool = False):
"""Delete entire dog folder"""
if from_permanent:
dog_dir = self.database_dir / f"dog_{dog_id:03d}"
if dog_id in self.permanent_dogs:
del self.permanent_dogs[dog_id]
else:
dog_dir = self.temp_dir / f"dog_{dog_id:03d}"
if dog_id in self.temp_processed_dogs:
del self.temp_processed_dogs[dog_id]
if dog_dir.exists():
shutil.rmtree(dog_dir)
def save_final_dataset(self, format_type: str = 'both') -> str:
"""Export both temp and permanent dogs - UPDATED for full body only"""
if self.final_dir.exists():
shutil.rmtree(self.final_dir)
self.final_dir.mkdir()
# Combine temp and permanent dogs
all_dog_dirs = []
# Add temp dogs
for d in self.temp_dir.iterdir():
if d.is_dir() and d.name.startswith('dog_'):
all_dog_dirs.append(d)
# Add permanent dogs
temp_dogs = {d.name for d in all_dog_dirs}
for d in self.database_dir.iterdir():
if d.is_dir() and d.name.startswith('dog_') and d.name not in temp_dogs:
all_dog_dirs.append(d)
data_entries = []
final_id = 1
for dog_dir in sorted(all_dog_dirs):
if not dog_dir.exists():
continue
final_dog_dir = self.final_dir / f"dog_{final_id:03d}"
shutil.copytree(dog_dir, final_dog_dir)
for img_path in final_dog_dir.glob("*.jpg"):
data_entries.append({
'dog_id': final_id,
'image_path': str(img_path.relative_to(self.final_dir)),
'class': final_id
})
final_id += 1
if format_type in ['csv', 'both']:
df = pd.DataFrame(data_entries)
if len(df) > 5:
from sklearn.model_selection import train_test_split
train_df, val_df = train_test_split(
df, test_size=0.2, stratify=df['dog_id'], random_state=42
)
train_df.to_csv(self.final_dir / 'train.csv', index=False)
val_df.to_csv(self.final_dir / 'val.csv', index=False)
else:
df.to_csv(self.final_dir / 'train.csv', index=False)
metadata = {
'total_dogs': final_id - 1,
'total_images': len(data_entries),
'format': format_type,
'created': datetime.now().isoformat()
}
with open(self.final_dir / 'metadata.json', 'w') as f:
json.dump(metadata, f, indent=2)
# Create zip
zip_path = self.final_dir.parent / f"resnet_dataset_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_path in self.final_dir.rglob('*'):
zipf.write(file_path, file_path.relative_to(self.final_dir))
return str(zip_path)
def create_interface(self):
"""Create Gradio interface with fixes"""
with gr.Blocks(
title="ResNet Fine-tuning Dataset Creator",
theme=gr.themes.Soft()
) as app:
gr.Markdown("""
# 🎯 ResNet Fine-tuning Dataset Creator - Full Body Only
### Creates dataset with full body dog images only (no head extraction)
""")
# States
processing_state = gr.State(None)
selected_indices_state = gr.State([])
with gr.Tabs() as tabs:
# ========== STEP 1: PROCESS VIDEO ==========
with gr.Tab("πŸ“Ή Step 1: Process Video", id=0):
with gr.Row():
video_input = gr.Video(label="Upload Video")
with gr.Column():
reid_threshold = gr.Slider(
0.30, 0.85, 0.40, step=0.05,
label="ReID Threshold",
info="Lower = More lenient (combine similar dogs)"
)
max_images = gr.Slider(
10, 50, 30, step=5,
label="Max Images per Dog"
)
sample_rate = gr.Slider(
1, 5, 2, step=1,
label="Sample Rate",
info="Process every Nth frame"
)
process_btn = gr.Button("πŸš€ Process Video", variant="primary", size="lg")
with gr.Column():
progress_bar = gr.Textbox(label="Progress", interactive=False)
results_display = gr.HTML(label="Processing Results")
with gr.Row():
clear_btn = gr.Button(
"πŸ”„ Clear & Reset (Process Again)",
variant="secondary",
size="lg",
visible=False
)
def process_wrapper(video, threshold, max_img, sample):
"""Process with current settings"""
if not video:
return None, "", "Please upload a video", gr.update(visible=False)
# Process video (will auto-clear if needed)
for update in self.process_video(video, threshold, int(max_img), int(sample)):
if 'progress' in update:
yield None, "", update['status'], gr.update(visible=False)
else:
# Format results
session = update['session']
html = f"""
<div style="padding: 20px; background: #f8f9fa; border-radius: 10px;">
<h3>πŸ“Š Processing Complete!</h3>
<p><b>Dogs detected:</b> {session['num_dogs']}</p>
<p><b>Total full body images:</b> {session['total_images']}</p>
<p><b>ReID threshold used:</b> {session['reid_threshold']:.2f}</p>
<hr>
<p>βœ… Data is in <b>temporary storage</b>. Review in Step 2 before saving permanently.</p>
</div>
"""
yield session, html, "Complete! βœ…", gr.update(visible=True)
def clear_and_reset():
"""Clear all temp data for reprocessing"""
self.clear_temp_data()
return None, "", "", gr.update(visible=False)
process_btn.click(
process_wrapper,
inputs=[video_input, reid_threshold, max_images, sample_rate],
outputs=[processing_state, results_display, progress_bar, clear_btn]
)
clear_btn.click(
clear_and_reset,
outputs=[processing_state, results_display, progress_bar, clear_btn]
)
# ========== STEP 2: VERIFY & CLEAN ==========
with gr.Tab("βœ… Step 2: Verify & Clean", id=1):
gr.Markdown("""
Review temporary results. **Nothing is permanently saved until you click Save.**
Click images in the gallery to select them, then use Remove Selected.
""")
with gr.Row():
with gr.Column():
source_selector = gr.Radio(
choices=["Temporary (Current Video)", "Permanent (Saved)"],
value="Temporary (Current Video)",
label="Data Source"
)
dog_selector = gr.Dropdown(
label="Select Dog",
choices=[],
interactive=True
)
refresh_btn = gr.Button("πŸ”„ Refresh List")
image_gallery = gr.Gallery(
label="Full Body Images - Click to select for removal",
show_label=True,
columns=6,
rows=8, # Increased rows for more visibility
object_fit="contain",
height=600, # Fixed height for scrolling
interactive=True,
type="numpy"
)
with gr.Row():
selected_info = gr.Textbox(
label="Selected Images",
value="No images selected",
interactive=False
)
remove_selected_btn = gr.Button("πŸ—‘ Remove Selected Images", variant="secondary")
delete_dog_btn = gr.Button("❌ Delete Entire Dog", variant="stop")
with gr.Row():
save_to_permanent_btn = gr.Button(
"πŸ’Ύ Save Current Video Results to Permanent Database",
variant="primary",
size="lg"
)
clear_permanent_btn = gr.Button(
"⚠️ Clear All Permanent Data",
variant="stop"
)
status_text = gr.Textbox(label="Status", interactive=False)
def refresh_dogs(source):
"""Refresh dog list based on source"""
if source == "Temporary (Current Video)":
if not self.temp_processed_dogs:
return gr.update(choices=[], value=None)
choices = [f"Dog {dog_id}" for dog_id in sorted(self.temp_processed_dogs.keys())]
else:
if not self.permanent_dogs:
return gr.update(choices=[], value=None)
choices = [f"Dog {dog_id}" for dog_id in sorted(self.permanent_dogs.keys())]
if choices:
return gr.update(choices=choices, value=choices[0])
return gr.update(choices=[], value=None)
def show_dog_images(dog_selection, source):
"""Display ALL images for selected dog"""
if not dog_selection:
return [], [], "No dog selected"
dog_id = int(dog_selection.split()[1])
from_permanent = (source == "Permanent (Saved)")
# Don't limit number of images - show all
images = self.get_dog_images(dog_id, from_permanent)
return images, [], f"Showing {len(images)} images for Dog {dog_id}"
def handle_gallery_select(evt: gr.SelectData, selected_indices):
"""Handle gallery selection"""
if evt.index in selected_indices:
selected_indices.remove(evt.index)
else:
selected_indices.append(evt.index)
if selected_indices:
return selected_indices, f"Selected images: {sorted(selected_indices)}"
return [], "No images selected"
def remove_selected_images(dog_selection, source, selected_indices):
"""Remove selected images"""
if not dog_selection:
return "No dog selected", [], []
if not selected_indices:
return "No images selected", gr.update(), selected_indices
dog_id = int(dog_selection.split()[1])
from_permanent = (source == "Permanent (Saved)")
self.remove_images_by_selection(dog_id, selected_indices, from_permanent)
# Refresh gallery
images = self.get_dog_images(dog_id, from_permanent)
return f"Removed {len(selected_indices)} images", images, []
def delete_dog(dog_selection, source):
"""Delete entire dog"""
if not dog_selection:
return "No dog selected", []
dog_id = int(dog_selection.split()[1])
from_permanent = (source == "Permanent (Saved)")
self.delete_dog(dog_id, from_permanent)
return f"Deleted Dog {dog_id}", []
def save_to_permanent():
"""Save current temp results to permanent database"""
if not self.temp_processed_dogs:
return "No temporary data to save"
self.save_to_permanent_database()
count = len(self.temp_processed_dogs)
self.clear_temp_data() # Clear temp after saving
return f"βœ… Saved {count} dogs to permanent database. Temp data cleared."
def clear_all_permanent():
"""Clear all permanent data"""
self.clear_all_permanent_data()
return "⚠️ All permanent data cleared"
# Event handlers
refresh_btn.click(
refresh_dogs,
inputs=source_selector,
outputs=dog_selector
)
dog_selector.change(
show_dog_images,
inputs=[dog_selector, source_selector],
outputs=[image_gallery, selected_indices_state, selected_info]
)
image_gallery.select(
handle_gallery_select,
inputs=selected_indices_state,
outputs=[selected_indices_state, selected_info]
)
remove_selected_btn.click(
remove_selected_images,
inputs=[dog_selector, source_selector, selected_indices_state],
outputs=[status_text, image_gallery, selected_indices_state]
)
delete_dog_btn.click(
delete_dog,
inputs=[dog_selector, source_selector],
outputs=[status_text, image_gallery]
)
save_to_permanent_btn.click(
save_to_permanent,
outputs=status_text
)
clear_permanent_btn.click(
clear_all_permanent,
outputs=status_text
)
# ========== STEP 3: EXPORT DATASET ==========
with gr.Tab("πŸ’Ύ Step 3: Export Dataset", id=2):
gr.Markdown("""
Export combined dataset (temporary + permanent dogs) for training.
**Dataset contains full body images only.**
""")
format_selector = gr.Radio(
choices=["folder", "csv", "both"],
value="both",
label="Export Format"
)
export_btn = gr.Button("πŸ“¦ Export Final Dataset", variant="primary", size="lg")
export_output = gr.Textbox(label="Export Path", interactive=False)
download_file = gr.File(label="Download Dataset", interactive=False)
stats_display = gr.Markdown()
def export_dataset(format_type):
try:
zip_path = self.save_final_dataset(format_type)
with open(self.final_dir / 'metadata.json', 'r') as f:
metadata = json.load(f)
stats = f"""
### βœ… Dataset Exported!
- **Total Dogs**: {metadata['total_dogs']}
- **Total Full Body Images**: {metadata['total_images']}
- **Format**: {format_type}
Download the ZIP file below.
"""
return zip_path, zip_path, stats
except Exception as e:
return "", None, f"### ❌ Export Error\n{str(e)}"
export_btn.click(
export_dataset,
inputs=format_selector,
outputs=[export_output, download_file, stats_display]
)
return app
# Main entry point
if __name__ == "__main__":
creator = ResNetDatasetCreator()
app = creator.create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)