mustafa142 commited on
Commit
66943cf
·
verified ·
1 Parent(s): 0c479d0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)
5
+
6
+
7
+ st.set_page_config(
8
+ page_title="Emotion Detection",
9
+ page_icon=":bar_chart:",
10
+ layout="centered",
11
+ )
12
+
13
+
14
+ st.markdown(
15
+ """
16
+ <style>
17
+ .stButton > button {
18
+ background-color: #4CAF50;
19
+ color: white;
20
+ font-size: 18px;
21
+ padding: 10px 20px;
22
+ border: none;
23
+ cursor: pointer;
24
+ }
25
+ .stButton > button:hover {
26
+ background-color: #86D8DB;
27
+ }
28
+ .stApp {
29
+ background-color: #73D9C8; /* Background color */
30
+ }
31
+ </style>
32
+ """,
33
+ unsafe_allow_html=True,
34
+ )
35
+
36
+
37
+ st.title("🎭 Emotion Detection")
38
+ st.markdown("Choose the input type and enter a sentence or upload an image to classify emotions.")
39
+
40
+
41
+ input_type = st.radio("Select Input Type", ("Text", "Image"))
42
+
43
+
44
+ if input_type == "Text":
45
+ user_input = st.text_area("Enter a sentence:")
46
+ uploaded_image = None
47
+ else:
48
+ uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
49
+ user_input = ""
50
+
51
+
52
+ if st.button("Analyze"):
53
+ with st.spinner("Analyzing..."):
54
+ if input_type == "Text" and user_input:
55
+
56
+ model_outputs = classifier(user_input)
57
+ st.subheader("Emotion Classification Results (Text):")
58
+ elif input_type == "Image" and uploaded_image is not None:
59
+
60
+ st.image(uploaded_image, use_column_width=True, caption="Uploaded Image")
61
+ model_outputs = classifier("Analyze this image.")
62
+ st.subheader("Emotion Classification Results (Image):")
63
+ else:
64
+ st.warning("Please enter a sentence or upload an image to analyze.")
65
+
66
+ for label_info in model_outputs[0]:
67
+ label = label_info["label"]
68
+ score = label_info["score"]
69
+ st.write(f"- {label}: {score:.4f}")
70
+
71
+
72
+ if st.button("Clear"):
73
+ user_input = ""
74
+ uploaded_image = None