Spaces:
Runtime error
Runtime error
Commit
·
f33afb3
1
Parent(s):
4af8357
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,16 @@ model_name = "distilbert-base-cased-distilled-squad"
|
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Load PDF file and extract text
|
| 15 |
pdf_reader = PyPDF2.PdfFileReader(io.BytesIO(pdf_file.read()))
|
| 16 |
text = ""
|
|
@@ -19,27 +28,23 @@ def answer_questions(pdf_file, questions):
|
|
| 19 |
text += page.extractText()
|
| 20 |
text = text.strip()
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# Tokenize question and text
|
| 25 |
-
input_ids = tokenizer.encode(question, text)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
return answers
|
| 36 |
|
| 37 |
inputs = [
|
| 38 |
gr.inputs.File(label="PDF document"),
|
| 39 |
-
gr.inputs.
|
| 40 |
]
|
| 41 |
|
| 42 |
-
outputs = gr.outputs.
|
| 43 |
|
| 44 |
gr.Interface(fn=answer_questions, inputs=inputs, outputs=outputs, title="PDF Question Answering Tool",
|
| 45 |
-
description="Upload a PDF document and
|
|
|
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 12 |
|
| 13 |
+
# Define a list of pre-defined questions
|
| 14 |
+
predefined_questions = [
|
| 15 |
+
"What is the purpose of this document?",
|
| 16 |
+
"What is the main topic of the document?",
|
| 17 |
+
"Who is the target audience?",
|
| 18 |
+
"What is the author's main argument?",
|
| 19 |
+
"What is the conclusion of the document?",
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
def answer_questions(pdf_file, question):
|
| 23 |
# Load PDF file and extract text
|
| 24 |
pdf_reader = PyPDF2.PdfFileReader(io.BytesIO(pdf_file.read()))
|
| 25 |
text = ""
|
|
|
|
| 28 |
text += page.extractText()
|
| 29 |
text = text.strip()
|
| 30 |
|
| 31 |
+
# Tokenize question and text
|
| 32 |
+
input_ids = tokenizer.encode(question, text)
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Perform question answering
|
| 35 |
+
outputs = model(torch.tensor([input_ids]), return_dict=True)
|
| 36 |
+
answer_start = outputs.start_logits.argmax().item()
|
| 37 |
+
answer_end = outputs.end_logits.argmax().item()
|
| 38 |
+
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end+1]))
|
| 39 |
|
| 40 |
+
return answer
|
|
|
|
|
|
|
| 41 |
|
| 42 |
inputs = [
|
| 43 |
gr.inputs.File(label="PDF document"),
|
| 44 |
+
gr.inputs.Dropdown(label="Question", choices=predefined_questions),
|
| 45 |
]
|
| 46 |
|
| 47 |
+
outputs = gr.outputs.Textbox(label="Answer")
|
| 48 |
|
| 49 |
gr.Interface(fn=answer_questions, inputs=inputs, outputs=outputs, title="PDF Question Answering Tool",
|
| 50 |
+
description="Upload a PDF document and select a question from the dropdown. The app will use a pre-trained model to find the answer.").launch()
|