Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| from huggingface_hub import hf_hub_download | |
| def download_models(model_id): | |
| hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./") | |
| return f"./{model_id}" | |
| def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold): | |
| """ | |
| Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust | |
| the input size and apply test time augmentation. | |
| :param model_path: Path to the YOLOv9 model file. | |
| :param conf_threshold: Confidence threshold for NMS. | |
| :param iou_threshold: IoU threshold for NMS. | |
| :param img_path: Path to the image file. | |
| :param size: Optional, input size for inference. | |
| :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. | |
| """ | |
| # Import YOLOv9 | |
| import yolov9 | |
| # Load the model | |
| model_path = download_models(model_id) | |
| model = yolov9.load(model_path, device="cuda:0") | |
| # Set model parameters | |
| model.conf = conf_threshold | |
| model.iou = iou_threshold | |
| # Perform inference | |
| results = model(img_path, size=image_size) | |
| # Optionally, show detection bounding boxes on image | |
| output = results.render() | |
| return output[0] | |
| def app(): | |
| with gr.Blocks(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| img_path = gr.Image(type="filepath", label="Image") | |
| model_path = gr.Dropdown( | |
| label="Model", | |
| choices=[ | |
| "gelan-c.pt", | |
| "gelan-e.pt", | |
| "yolov9-c.pt", | |
| "yolov9-e.pt", | |
| ], | |
| value="gelan-e.pt", | |
| ) | |
| image_size = gr.Slider( | |
| label="Image Size", | |
| minimum=320, | |
| maximum=1280, | |
| step=32, | |
| value=640, | |
| ) | |
| conf_threshold = gr.Slider( | |
| label="Confidence Threshold", | |
| minimum=0.1, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.4, | |
| ) | |
| iou_threshold = gr.Slider( | |
| label="IoU Threshold", | |
| minimum=0.1, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.5, | |
| ) | |
| yolov9_infer = gr.Button(value="Inference") | |
| with gr.Column(): | |
| output_numpy = gr.Image(type="numpy",label="Output") | |
| yolov9_infer.click( | |
| fn=yolov9_inference, | |
| inputs=[ | |
| img_path, | |
| model_path, | |
| image_size, | |
| conf_threshold, | |
| iou_threshold, | |
| ], | |
| outputs=[output_numpy], | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "example-data/img-1.jpg", | |
| "gelan-e.pt", | |
| 640, | |
| 0.4, | |
| 0.5, | |
| ], | |
| [ | |
| "example-data/img-2.jpg", | |
| "yolov9-c.pt", | |
| 640, | |
| 0.4, | |
| 0.5, | |
| ], | |
| [ | |
| "example-data/img-3.jpg", | |
| "yolov9-c.pt", | |
| 640, | |
| 0.4, | |
| 0.5, | |
| ], | |
| [ | |
| "example-data/img-4.jpg", | |
| "yolov9-e.pt", | |
| 640, | |
| 0.4, | |
| 0.5, | |
| ], | |
| [ | |
| "example-data/img-5.jpg", | |
| "gelan-e.pt", | |
| 740, | |
| 0.4, | |
| 0.5, | |
| ], | |
| [ | |
| "example-data/img-6.jpg", | |
| "yolov9-c.pt", | |
| 640, | |
| 0.4, | |
| 0.5, | |
| ], | |
| [ | |
| "example-data/img-4.jpg", | |
| "gelan-c.pt", | |
| 640, | |
| 0.4, | |
| 0.5, | |
| ], | |
| ], | |
| fn=yolov9_inference, | |
| inputs=[ | |
| img_path, | |
| model_path, | |
| image_size, | |
| conf_threshold, | |
| iou_threshold, | |
| ], | |
| outputs=[output_numpy], | |
| cache_examples=True, | |
| ) | |
| gradio_app = gr.Blocks() | |
| with gradio_app: | |
| gr.HTML( | |
| """ | |
| <h1 style='text-align: center'> | |
| Object Detection Using YOLO | |
| </h1> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| app() | |
| gradio_app.launch(debug=True) |