opus-v0-70b / app.py
muryshev's picture
Update app.py
c8dffef
raw
history blame
6.86 kB
from flask import Flask, request, Response
import logging
from llama_cpp import Llama
import threading
from huggingface_hub import snapshot_download, Repository
import huggingface_hub
import gc
import os.path
from datetime import datetime
import xml.etree.ElementTree as ET
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
SYSTEM_TOKEN = 1788
USER_TOKEN = 1404
BOT_TOKEN = 9225
LINEBREAK_TOKEN = 13
ROLE_TOKENS = {
"user": USER_TOKEN,
"bot": BOT_TOKEN,
"system": SYSTEM_TOKEN
}
CONTEXT_SIZE = 4000
ENABLE_GPU = True
GPU_LAYERS = 70
# Create a lock object
lock = threading.Lock()
app = Flask(__name__)
# Configure Flask logging
app.logger.setLevel(logging.DEBUG) # Set the desired logging level
# Initialize the model when the application starts
#model_path = "../models/model-q4_K.gguf" # Replace with the actual model path
#model_name = "model/ggml-model-q4_K.gguf"
#repo_name = "IlyaGusev/saiga2_13b_gguf"
#model_name = "model-q4_K.gguf"
repo_name = "dreamgen/opus-v0-70b-gguf"
model_name = "dreamgen-opus-v0-70b-Q4_K_M.gguf"
#repo_name = "IlyaGusev/saiga2_7b_gguf"
#model_name = "model-q4_K.gguf"
local_dir = '.'
if os.path.isdir('/data'):
app.logger.info('Persistent storage enabled')
model = None
model_path = snapshot_download(repo_id=repo_name, allow_patterns=model_name) + '/' + model_name
app.logger.info('Model path: ' + model_path)
DATASET_REPO_URL = "https://huggingface.co/datasets/muryshev/saiga-chat"
DATA_FILENAME = "opus-v0-70b.xml"
DATA_FILE = os.path.join("dataset", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
app.logger.info("hfh: "+huggingface_hub.__version__)
repo = Repository(
local_dir="dataset", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def log(req: str = '', resp: str = ''):
if req or resp:
element = ET.Element("row", {"time": str(datetime.now()) })
req_element = ET.SubElement(element, "request")
req_element.text = req
resp_element = ET.SubElement(element, "response")
resp_element.text = resp
with open(DATA_FILE, "ab+") as xml_file:
xml_file.write(ET.tostring(element, encoding="utf-8"))
commit_url = repo.push_to_hub()
app.logger.info(commit_url)
def init_model(context_size, enable_gpu=False, gpu_layer_number=35):
global model
if model is not None:
del model
gc.collect()
if enable_gpu:
model = Llama(
model_path=model_path,
n_ctx=context_size,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gpu_layers=gpu_layer_number,
n_gqa=8 #must be set for 70b models
)
return model
else:
model = Llama(
model_path=model_path,
n_ctx=context_size,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gqa=8 #must be set for 70b models
)
return model
init_model(CONTEXT_SIZE, ENABLE_GPU, GPU_LAYERS)
def get_message_tokens(model, role, content):
message_tokens = model.tokenize(content.encode("utf-8"))
message_tokens.insert(1, ROLE_TOKENS[role])
message_tokens.insert(2, LINEBREAK_TOKEN)
message_tokens.append(model.token_eos())
return message_tokens
def get_system_tokens(model):
system_message = {
"role": "system",
"content": SYSTEM_PROMPT
}
return get_message_tokens(model, **system_message)
def get_system_tokens_for_preprompt(model, preprompt):
system_message = {
"role": "system",
"content": preprompt
}
return get_message_tokens(model, **system_message)
#app.logger.info('Evaluating system tokens start')
#system_tokens = get_system_tokens(model)
#model.eval(system_tokens)
#app.logger.info('Evaluating system tokens end')
stop_generation = False
def generate_tokens(model, generator):
global stop_generation
app.logger.info('generate_tokens started')
with lock:
try:
for token in generator:
if token == model.token_eos() or stop_generation:
stop_generation = False
app.logger.info('End generating')
yield b'' # End of chunk
break
token_str = model.detokenize([token])#.decode("utf-8", errors="ignore")
yield token_str
except Exception as e:
app.logger.info('generator exception')
app.logger.info(e)
yield b'' # End of chunk
@app.route('/change_context_size', methods=['GET'])
def handler_change_context_size():
global stop_generation, model
stop_generation = True
new_size = int(request.args.get('size', CONTEXT_SIZE))
init_model(new_size, ENABLE_GPU, GPU_LAYERS)
return Response('Size changed', content_type='text/plain')
@app.route('/stop_generation', methods=['GET'])
def handler_stop_generation():
global stop_generation
stop_generation = True
return Response('Stopped', content_type='text/plain')
@app.route('/', methods=['GET', 'PUT', 'DELETE', 'PATCH'])
def generate_unknown_response():
app.logger.info('unknown method: '+request.method)
try:
request_payload = request.get_json()
app.logger.info('payload: '+request.get_json())
except Exception as e:
app.logger.info('payload empty')
return Response('What do you want?', content_type='text/plain')
response_tokens = bytearray()
def generate_and_log_tokens(user_request, model, generator):
#global response_tokens
for token in generate_tokens(model, generator):
#if token == b'': # or (max_new_tokens is not None and i >= max_new_tokens):
# log(user_request, response_tokens)#.decode("utf-8", errors="ignore"))
# response_tokens = bytearray()
# break
#response_tokens.extend(token)
yield token
@app.route('/', methods=['POST'])
def generate_response():
global stop_generation
raw_content = request.data
tokens = model.tokenize(raw_content)
generator = model.generate(
tokens[:CONTEXT_SIZE]
)
app.logger.info('Generator created')
# Use Response to stream tokens
return Response(generate_and_log_tokens(raw_content, model, generator), content_type='text/plain', status=200, direct_passthrough=True)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False, threaded=False)