mixtral-api / app.py
muryshev's picture
Update app.py
fae4fdc verified
raw
history blame
1.72 kB
from flask import Flask, request, Response, jsonify
from huggingface_hub import InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history=[], temperature=0.2, max_new_tokens=2000, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
#formatted_prompt = format_prompt(prompt, history)
#stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=False, return_full_text=False)
response = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
print(response)
output = ""
for response in stream:
yield response.token.text.encode('utf-8')
app = Flask(__name__)
@app.route('/health', methods=['GET'])
def health():
return jsonify({"status": "ok"})
@app.route('/completion', methods=['POST'])
def search_route():
data = request.get_json()
prompt = data.get('prompt', '')
#truncated_prompt = prompt[:32768]
return Response(generate(prompt), content_type='text/plain', status=200, direct_passthrough=True)
if __name__ == '__main__':
app.run(debug=False, host='0.0.0.0', port=7860)