Spaces:
Sleeping
Sleeping
| import json, os | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import torch.nn as nn | |
| import timm | |
| from timm.data import resolve_model_data_config, create_transform | |
| from transformers import AutoTokenizer, AutoModel | |
| import gradio as gr | |
| import ast | |
| from huggingface_hub import hf_hub_download | |
| SPACE_REPO = os.getenv("SPACE_REPO_NAME", "muruga778/api_for_model") # change if your space id differs | |
| def safe_torch_load(filename: str): | |
| """ | |
| 1) try local file | |
| 2) if corrupted -> force-download from Hub cache and load again | |
| """ | |
| try: | |
| print(f"π Loading weights: {filename} (local)") | |
| return torch.load(filename, map_location="cpu") | |
| except Exception as e: | |
| print(f"β οΈ Local load failed for {filename}: {repr(e)}") | |
| print("β¬οΈ Force-downloading from Hugging Face Hub cache...") | |
| cached = hf_hub_download( | |
| repo_id=SPACE_REPO, | |
| repo_type="space", | |
| filename=filename, | |
| force_download=True, | |
| ) | |
| print("β Downloaded to:", cached, "size(MB)=", os.path.getsize(cached)/1024/1024) | |
| return torch.load(cached, map_location="cpu") | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| def load_json(path): | |
| with open(path, "r") as f: | |
| return json.load(f) | |
| def clean_state_dict(sd): | |
| for key in ["state_dict", "model", "model_state_dict"]: | |
| if isinstance(sd, dict) and key in sd and isinstance(sd[key], dict): | |
| sd = sd[key] | |
| if isinstance(sd, dict) and any(k.startswith("module.") for k in sd.keys()): | |
| sd = {k.replace("module.", "", 1): v for k, v in sd.items()} | |
| return sd | |
| def softmax_np(x): | |
| x = x - np.max(x) | |
| e = np.exp(x) | |
| return e / (np.sum(e) + 1e-9) | |
| # --- Triage rules (simple + demo friendly) | |
| SEVERITY_BY_LABEL = { | |
| "acne": 1, "tinea": 2, "tinea versicolor": 1, "eczema": 2, "urticaria": 2, | |
| "psoriasis": 2, "folliculitis": 2, "impetigo": 3, "herpes zoster": 3, | |
| "drug rash": 4, "scabies": 3, "unknown": 2 | |
| } | |
| RED_FLAG_WORDS = [ | |
| "fever","breathing","shortness of breath","face","eye","mouth","genital", | |
| "severe pain","blister","purple","swelling","rapid","spreading","bleeding" | |
| ] | |
| def triage(label, conf, text): | |
| label_l = (label or "").lower().strip() | |
| text_l = (text or "").lower() | |
| score = SEVERITY_BY_LABEL.get(label_l, 2) | |
| hits = sum(1 for w in RED_FLAG_WORDS if w in text_l) | |
| if hits >= 2: score += 2 | |
| elif hits == 1: score += 1 | |
| if conf < 0.50: score += 1 | |
| if conf < 0.35: score += 1 | |
| score = int(max(1, min(5, score))) | |
| stage = "SELF-CARE / MONITOR" if score <= 2 else ("DOCTOR (24β48h)" if score <= 4 else "URGENT NOW") | |
| note = "Not medical advice. If rapidly worsening / fever / face-eye involvement / breathing trouble β seek urgent care." | |
| return stage, score, note | |
| # ---- Load config + label map | |
| CFG = load_json("fusion_config.json") | |
| LABEL_MAP = load_json("label_map.json") | |
| # Your label_map.json looks like: {"classes":[...], "label2idx":{...}} | |
| if isinstance(LABEL_MAP, dict) and "classes" in LABEL_MAP and isinstance(LABEL_MAP["classes"], list): | |
| CLASSES = [str(x) for x in LABEL_MAP["classes"]] | |
| label2idx = LABEL_MAP.get("label2idx", {c: i for i, c in enumerate(CLASSES)}) | |
| # Older possible formats: | |
| elif isinstance(LABEL_MAP, dict) and all(isinstance(k, str) and k.isdigit() for k in LABEL_MAP.keys()): | |
| # {"0":"eczema", ...} | |
| idx2label = {int(k): str(v) for k, v in LABEL_MAP.items()} | |
| CLASSES = [idx2label[i] for i in sorted(idx2label.keys())] | |
| label2idx = {c: i for i, c in enumerate(CLASSES)} | |
| else: | |
| # {"eczema": 0, ...} | |
| label2idx = {str(k): int(v) for k, v in LABEL_MAP.items()} | |
| CLASSES = [c for c, _ in sorted(label2idx.items(), key=lambda x: x[1])] | |
| NUM_CLASSES = len(CLASSES) | |
| print("β NUM_CLASSES:", NUM_CLASSES) | |
| print("β First labels:", CLASSES[:5]) | |
| IMG_BACKBONE = CFG.get("img_backbone", "tf_efficientnetv2_s") | |
| IMG_SIZE = int(CFG.get("img_size", 384)) | |
| TEXT_MODEL_NAME = CFG.get("text_model_name", "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext") | |
| MAX_LEN = int(CFG.get("max_len", 128)) | |
| # ---- Image model | |
| img_model = timm.create_model(IMG_BACKBONE, pretrained=False, num_classes=NUM_CLASSES) | |
| sd_img = clean_state_dict(safe_torch_load("best_scin_image.pt")) | |
| img_model.load_state_dict(sd_img, strict=True) | |
| img_model.to(DEVICE).eval() | |
| data_cfg = resolve_model_data_config(img_model) | |
| data_cfg["input_size"] = (3, IMG_SIZE, IMG_SIZE) | |
| img_tfm = create_transform(**data_cfg, is_training=False) | |
| # ---- Text model | |
| class TextClassifier(nn.Module): | |
| def __init__(self, model_name, num_classes, dropout=0.2): | |
| super().__init__() | |
| self.backbone = AutoModel.from_pretrained(model_name) | |
| self.drop = nn.Dropout(dropout) | |
| self.head = nn.Linear(self.backbone.config.hidden_size, num_classes) | |
| def forward(self, input_ids, attention_mask): | |
| out = self.backbone(input_ids=input_ids, attention_mask=attention_mask) | |
| feat = out.pooler_output if hasattr(out, "pooler_output") and out.pooler_output is not None else out.last_hidden_state[:, 0] | |
| return self.head(self.drop(feat)) | |
| tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME) | |
| text_model = TextClassifier(TEXT_MODEL_NAME, NUM_CLASSES) | |
| sd_txt = clean_state_dict(safe_torch_load("best_scin_text.pt")) | |
| text_model.load_state_dict(sd_txt, strict=False) | |
| text_model.to(DEVICE).eval() | |
| W_IMG = float(CFG.get("fusion_weights", {}).get("image", 0.6)) | |
| W_TXT = float(CFG.get("fusion_weights", {}).get("text", 0.4)) | |
| s = W_IMG + W_TXT | |
| W_IMG, W_TXT = W_IMG / s, W_TXT / s | |
| def predict(image, symptom_text, topk=3): | |
| if image is None: | |
| return "Upload an image.", "" | |
| pil = image.convert("RGB") if hasattr(image, "convert") else Image.open(image).convert("RGB") | |
| x_img = img_tfm(pil).unsqueeze(0).to(DEVICE) | |
| tok = tokenizer(symptom_text or "", truncation=True, padding="max_length", max_length=MAX_LEN, return_tensors="pt") | |
| tok = {k: v.to(DEVICE) for k, v in tok.items()} | |
| img_logits = img_model(x_img)[0].detach().float().cpu().numpy() | |
| txt_logits = text_model(tok["input_ids"], tok["attention_mask"])[0].detach().float().cpu().numpy() | |
| p_img = softmax_np(img_logits) | |
| p_txt = softmax_np(txt_logits) | |
| p = W_IMG * p_img + W_TXT * p_txt | |
| pred_idx = int(np.argmax(p)) | |
| pred_label = CLASSES[pred_idx] | |
| conf = float(p[pred_idx]) | |
| k = min(int(topk), len(CLASSES)) | |
| top_idx = np.argsort(-p)[:k] | |
| top_lines = [f"{i+1}) {CLASSES[int(ix)]} β {float(p[int(ix)]):.2f}" for i, ix in enumerate(top_idx)] | |
| stage, sev_score, note = triage(pred_label, conf, symptom_text) | |
| out1 = f"**Prediction:** {pred_label}\n\n**Confidence:** {conf:.2f}\n\n**Triage:** {stage} (score {sev_score}/5)\n\n{note}" | |
| out2 = "\n".join(top_lines) | |
| return out1, out2 | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Image(type="pil", label="Skin image"), | |
| gr.Textbox(lines=3, label="Symptoms (text)"), | |
| gr.Slider(1, 5, value=3, step=1, label="Top-K"), | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="Result"), | |
| gr.Textbox(label="Top-K"), | |
| ], | |
| title="SmartSkin β SCIN Multimodal (Image + Text Fusion)", | |
| description="Demo only. Not medical advice.", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |