cleaning
Browse files- app.py +3 -11
- feature_extractor.py +1 -21
- model.py +79 -93
- models/{chotic.pth → model_32.pth} +0 -0
app.py
CHANGED
|
@@ -4,34 +4,27 @@ import numpy as np
|
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
|
| 7 |
-
from model import
|
| 8 |
-
# from model_256 import EfficientChaoticGenerator
|
| 9 |
from feature_extractor import CodeFeatureExtractor
|
| 10 |
|
| 11 |
-
# ------------------- Device -------------------
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
checkpoint = torch.load("models/chotic.pth", map_location=device)
|
| 17 |
model.load_state_dict(checkpoint["state_dict"])
|
| 18 |
model.eval()
|
| 19 |
|
| 20 |
extractor = CodeFeatureExtractor()
|
| 21 |
|
| 22 |
-
# ------------------- Image Enhancement -------------------
|
| 23 |
def enhance_image(image: Image.Image, upscale_size: int):
|
| 24 |
-
# Upscale smoothly
|
| 25 |
image = image.resize((upscale_size, upscale_size), Image.Resampling.BICUBIC)
|
| 26 |
|
| 27 |
-
# Optional post-processing
|
| 28 |
image = image.filter(ImageFilter.GaussianBlur(radius=0.8))
|
| 29 |
image = ImageEnhance.Color(image).enhance(1.2)
|
| 30 |
image = ImageEnhance.Sharpness(image).enhance(1.1)
|
| 31 |
|
| 32 |
return image
|
| 33 |
|
| 34 |
-
# ------------------- Generation Function -------------------
|
| 35 |
def generate_from_code(code_text, upscale_size):
|
| 36 |
temp_file = "temp.py"
|
| 37 |
with open(temp_file, "w", encoding="utf-8") as f:
|
|
@@ -51,7 +44,6 @@ def generate_from_code(code_text, upscale_size):
|
|
| 51 |
enhanced = enhance_image(img, upscale_size)
|
| 52 |
return enhanced
|
| 53 |
|
| 54 |
-
# ------------------- Gradio UI -------------------
|
| 55 |
demo = gr.Interface(
|
| 56 |
fn=generate_from_code,
|
| 57 |
inputs=[
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
|
| 7 |
+
from model import Generator
|
|
|
|
| 8 |
from feature_extractor import CodeFeatureExtractor
|
| 9 |
|
|
|
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
|
| 12 |
+
model = Generator().to(device)
|
| 13 |
+
checkpoint = torch.load("models/mode_32.pth", map_location=device)
|
|
|
|
| 14 |
model.load_state_dict(checkpoint["state_dict"])
|
| 15 |
model.eval()
|
| 16 |
|
| 17 |
extractor = CodeFeatureExtractor()
|
| 18 |
|
|
|
|
| 19 |
def enhance_image(image: Image.Image, upscale_size: int):
|
|
|
|
| 20 |
image = image.resize((upscale_size, upscale_size), Image.Resampling.BICUBIC)
|
| 21 |
|
|
|
|
| 22 |
image = image.filter(ImageFilter.GaussianBlur(radius=0.8))
|
| 23 |
image = ImageEnhance.Color(image).enhance(1.2)
|
| 24 |
image = ImageEnhance.Sharpness(image).enhance(1.1)
|
| 25 |
|
| 26 |
return image
|
| 27 |
|
|
|
|
| 28 |
def generate_from_code(code_text, upscale_size):
|
| 29 |
temp_file = "temp.py"
|
| 30 |
with open(temp_file, "w", encoding="utf-8") as f:
|
|
|
|
| 44 |
enhanced = enhance_image(img, upscale_size)
|
| 45 |
return enhanced
|
| 46 |
|
|
|
|
| 47 |
demo = gr.Interface(
|
| 48 |
fn=generate_from_code,
|
| 49 |
inputs=[
|
feature_extractor.py
CHANGED
|
@@ -38,15 +38,6 @@ class CodeFeatureExtractor:
|
|
| 38 |
]
|
| 39 |
|
| 40 |
def extract_from_file(self, filepath):
|
| 41 |
-
"""
|
| 42 |
-
Extract features from file
|
| 43 |
-
|
| 44 |
-
Args:
|
| 45 |
-
filepath (str)
|
| 46 |
-
|
| 47 |
-
Returns:
|
| 48 |
-
list: list of dfeatures
|
| 49 |
-
"""
|
| 50 |
try:
|
| 51 |
with open(filepath, 'r', encoding='utf-8') as f:
|
| 52 |
code = f.read()
|
|
@@ -229,13 +220,6 @@ class CodeFeatureExtractor:
|
|
| 229 |
return volume
|
| 230 |
|
| 231 |
def extract_from_directory(self, directory, output_file='data/features.npy'):
|
| 232 |
-
"""
|
| 233 |
-
Extract from a dir
|
| 234 |
-
|
| 235 |
-
Args:
|
| 236 |
-
directory (str): dir name
|
| 237 |
-
output_file (str): file to save
|
| 238 |
-
"""
|
| 239 |
print(f"Extracting from: {directory}")
|
| 240 |
|
| 241 |
features_list = []
|
|
@@ -258,7 +242,7 @@ class CodeFeatureExtractor:
|
|
| 258 |
failed += 1
|
| 259 |
|
| 260 |
print(f"\n Features extracted from {len(features_list)} files")
|
| 261 |
-
print(f"
|
| 262 |
|
| 263 |
features_array = np.array(features_list)
|
| 264 |
np.save(output_file, features_array)
|
|
@@ -290,10 +274,6 @@ class CodeFeatureExtractor:
|
|
| 290 |
def main():
|
| 291 |
extractor = CodeFeatureExtractor()
|
| 292 |
|
| 293 |
-
print("="*60)
|
| 294 |
-
print("Feature Extractor Code")
|
| 295 |
-
print("="*60)
|
| 296 |
-
|
| 297 |
#features = extractor.extract_from_directory('data/raw_code')
|
| 298 |
|
| 299 |
features = extractor.extract_from_file('src/model.py')
|
|
|
|
| 38 |
]
|
| 39 |
|
| 40 |
def extract_from_file(self, filepath):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
try:
|
| 42 |
with open(filepath, 'r', encoding='utf-8') as f:
|
| 43 |
code = f.read()
|
|
|
|
| 220 |
return volume
|
| 221 |
|
| 222 |
def extract_from_directory(self, directory, output_file='data/features.npy'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
print(f"Extracting from: {directory}")
|
| 224 |
|
| 225 |
features_list = []
|
|
|
|
| 242 |
failed += 1
|
| 243 |
|
| 244 |
print(f"\n Features extracted from {len(features_list)} files")
|
| 245 |
+
print(f"Failed: {failed} files")
|
| 246 |
|
| 247 |
features_array = np.array(features_list)
|
| 248 |
np.save(output_file, features_array)
|
|
|
|
| 274 |
def main():
|
| 275 |
extractor = CodeFeatureExtractor()
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
#features = extractor.extract_from_directory('data/raw_code')
|
| 278 |
|
| 279 |
features = extractor.extract_from_file('src/model.py')
|
model.py
CHANGED
|
@@ -7,7 +7,6 @@ from torch.utils.data import Dataset, DataLoader
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
|
| 9 |
|
| 10 |
-
# ===================== Feature Names =====================
|
| 11 |
|
| 12 |
FEATURE_NAMES = [
|
| 13 |
"lines_of_code", "num_functions", "num_classes", "num_loops",
|
|
@@ -20,7 +19,6 @@ FEATURE_NAMES = [
|
|
| 20 |
]
|
| 21 |
|
| 22 |
|
| 23 |
-
# ===================== Dataset =====================
|
| 24 |
|
| 25 |
class CodeToImageDataset(Dataset):
|
| 26 |
def __init__(self, features):
|
|
@@ -33,28 +31,27 @@ class CodeToImageDataset(Dataset):
|
|
| 33 |
return self.features[idx]
|
| 34 |
|
| 35 |
|
| 36 |
-
# ===================== Feature-Driven Generator with CNN =====================
|
| 37 |
|
| 38 |
-
class
|
| 39 |
"""
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
"""
|
| 46 |
def __init__(self, input_dim=25, image_size=32):
|
| 47 |
super().__init__()
|
| 48 |
self.image_size = image_size
|
| 49 |
|
| 50 |
-
# Feature
|
| 51 |
self.structure_idx = [0, 1, 2, 10, 19, 20]
|
| 52 |
self.control_idx = [3, 4, 9]
|
| 53 |
self.operations_idx = [5, 7, 8, 6]
|
| 54 |
self.style_idx = [14, 15, 24, 23]
|
| 55 |
self.advanced_idx = [12, 13, 16, 17, 18, 11, 21, 22]
|
| 56 |
|
| 57 |
-
#
|
| 58 |
self.low_freq_encoder = nn.Sequential(
|
| 59 |
nn.Linear(len(self.structure_idx), 256),
|
| 60 |
nn.LayerNorm(256),
|
|
@@ -63,7 +60,7 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 63 |
nn.Linear(256, 512)
|
| 64 |
)
|
| 65 |
|
| 66 |
-
#
|
| 67 |
self.mid_freq_encoder = nn.Sequential(
|
| 68 |
nn.Linear(len(self.control_idx) + len(self.operations_idx), 256),
|
| 69 |
nn.LayerNorm(256),
|
|
@@ -72,7 +69,7 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 72 |
nn.Linear(256, 512)
|
| 73 |
)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
self.high_freq_encoder = nn.Sequential(
|
| 77 |
nn.Linear(len(self.style_idx) + len(self.advanced_idx), 256),
|
| 78 |
nn.LayerNorm(256),
|
|
@@ -88,7 +85,7 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 88 |
nn.Linear(128, 12) # 4 colors × 3 channels (HSV or RGB)
|
| 89 |
)
|
| 90 |
|
| 91 |
-
#
|
| 92 |
self.composition_net = nn.Sequential(
|
| 93 |
nn.Linear(512, 256),
|
| 94 |
nn.LayerNorm(256),
|
|
@@ -96,12 +93,12 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 96 |
nn.Linear(256, 6) # [center_x, center_y, scale, rotation, flow_x, flow_y]
|
| 97 |
)
|
| 98 |
|
| 99 |
-
#
|
| 100 |
self.low_to_spatial = nn.Linear(512, 8 * 8 * 128)
|
| 101 |
self.mid_to_spatial = nn.Linear(512, 16 * 16 * 64)
|
| 102 |
self.high_to_spatial = nn.Linear(512, 32 * 32 * 32)
|
| 103 |
|
| 104 |
-
# Low
|
| 105 |
self.low_decoder = nn.Sequential(
|
| 106 |
nn.ConvTranspose2d(128, 64, 4, 2, 1), # 8->16
|
| 107 |
nn.GroupNorm(8, 64),
|
|
@@ -111,14 +108,14 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 111 |
nn.GELU()
|
| 112 |
)
|
| 113 |
|
| 114 |
-
# Mid
|
| 115 |
self.mid_decoder = nn.Sequential(
|
| 116 |
nn.ConvTranspose2d(64, 32, 4, 2, 1), # 16->32
|
| 117 |
nn.GroupNorm(8, 32),
|
| 118 |
nn.GELU()
|
| 119 |
)
|
| 120 |
|
| 121 |
-
# High
|
| 122 |
self.high_decoder = nn.Sequential(
|
| 123 |
nn.Conv2d(32, 32, 3, 1, 1),
|
| 124 |
nn.GroupNorm(8, 32),
|
|
@@ -126,7 +123,7 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 126 |
)
|
| 127 |
|
| 128 |
self.fusion = nn.Sequential(
|
| 129 |
-
nn.Conv2d(96, 64, 3, 1, 1),
|
| 130 |
nn.GroupNorm(8, 64),
|
| 131 |
nn.GELU(),
|
| 132 |
nn.Conv2d(64, 32, 3, 1, 1),
|
|
@@ -152,14 +149,12 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 152 |
nn.init.constant_(m.bias, 0)
|
| 153 |
|
| 154 |
def generate_perlin_noise(self, batch_size, size, device):
|
| 155 |
-
"""Generate smooth Perlin-like noise for organic texture"""
|
| 156 |
grid_size = 4
|
| 157 |
grid = torch.randn(batch_size, 2, grid_size, grid_size, device=device)
|
| 158 |
noise = F.interpolate(grid, size=(size, size), mode='bicubic', align_corners=True)
|
| 159 |
-
return noise[:, 0:1] #
|
| 160 |
|
| 161 |
def apply_color_palette(self, grayscale, palette):
|
| 162 |
-
"""Map grayscale values to feature-driven color palette"""
|
| 163 |
batch_size = grayscale.size(0)
|
| 164 |
palette = palette.view(batch_size, 4, 3) # 4 clors, 3 channels
|
| 165 |
|
|
@@ -172,7 +167,6 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 172 |
channel_colors = palette[:, :, i] # (batch, 4)
|
| 173 |
stops = torch.linspace(0, 1, 4, device=grayscale.device)
|
| 174 |
|
| 175 |
-
# Interpolate between color stops
|
| 176 |
result = torch.zeros_like(gray_norm)
|
| 177 |
for j in range(3):
|
| 178 |
mask = (gray_norm >= stops[j]) & (gray_norm < stops[j+1])
|
|
@@ -191,37 +185,36 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 191 |
batch_size = x.size(0)
|
| 192 |
device = x.device
|
| 193 |
|
| 194 |
-
#
|
| 195 |
structure = x[:, self.structure_idx]
|
| 196 |
control = x[:, self.control_idx]
|
| 197 |
operations = x[:, self.operations_idx]
|
| 198 |
style = x[:, self.style_idx]
|
| 199 |
advanced = x[:, self.advanced_idx]
|
| 200 |
|
| 201 |
-
#
|
| 202 |
low_freq = self.low_freq_encoder(structure)
|
| 203 |
mid_freq = self.mid_freq_encoder(torch.cat([control, operations], dim=1))
|
| 204 |
high_freq = self.high_freq_encoder(torch.cat([style, advanced], dim=1))
|
| 205 |
|
| 206 |
-
#
|
| 207 |
palette = self.color_palette_net(x)
|
| 208 |
|
| 209 |
-
#
|
| 210 |
composition_params = self.composition_net(low_freq)
|
| 211 |
composition_params = torch.tanh(composition_params)
|
| 212 |
|
| 213 |
-
# Project
|
| 214 |
low_spatial = self.low_to_spatial(low_freq).view(batch_size, 128, 8, 8)
|
| 215 |
mid_spatial = self.mid_to_spatial(mid_freq).view(batch_size, 64, 16, 16)
|
| 216 |
high_spatial = self.high_to_spatial(high_freq).view(batch_size, 32, 32, 32)
|
| 217 |
|
| 218 |
-
# Decode
|
| 219 |
low_decoded = self.low_decoder(low_spatial) # (batch, 32, 32, 32)
|
| 220 |
mid_decoded = self.mid_decoder(mid_spatial) # (batch, 32, 32, 32)
|
| 221 |
high_decoded = self.high_decoder(high_spatial) # (batch, 32, 32, 32)
|
| 222 |
|
| 223 |
-
# Apply
|
| 224 |
-
# (rotation, translation via grid_sample)
|
| 225 |
theta = composition_params[:, 3:4] # rotation
|
| 226 |
scale = 0.5 + composition_params[:, 2:3] # scale
|
| 227 |
tx, ty = composition_params[:, 0:1], composition_params[:, 1:2]
|
|
@@ -239,32 +232,42 @@ class ChaoticCoherentGenerator(nn.Module):
|
|
| 239 |
grid = F.affine_grid(affine_matrix, low_decoded.size(), align_corners=False)
|
| 240 |
low_decoded = F.grid_sample(low_decoded, grid, align_corners=False, padding_mode='reflection')
|
| 241 |
|
| 242 |
-
# Merge frequency bands
|
| 243 |
merged = torch.cat([low_decoded, mid_decoded, high_decoded], dim=1)
|
| 244 |
-
fused = self.fusion(merged)
|
| 245 |
|
| 246 |
-
# Add controlled Perlin noise
|
| 247 |
noise_scale = self.noise_strength(x)
|
| 248 |
perlin = self.generate_perlin_noise(batch_size, 32, device)
|
| 249 |
perlin = perlin.expand(-1, 3, -1, -1)
|
| 250 |
fused = fused + noise_scale.view(-1, 1, 1, 1) * perlin * 0.3
|
| 251 |
|
| 252 |
-
# Convert to grayscale
|
| 253 |
grayscale = fused.mean(dim=1, keepdim=True)
|
| 254 |
|
| 255 |
-
# Apply feature-driven color palette
|
| 256 |
colored = self.apply_color_palette(grayscale, palette)
|
| 257 |
|
| 258 |
-
# Final normalization
|
| 259 |
output = torch.tanh(colored)
|
| 260 |
|
| 261 |
return output
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
def frequency_coherence_loss(images):
|
| 267 |
-
"""Enforce low-frequency dominance with high-frequency details"""
|
| 268 |
# FFT decomposition
|
| 269 |
fft = torch.fft.fft2(images)
|
| 270 |
fft_shifted = torch.fft.fftshift(fft)
|
|
@@ -290,7 +293,6 @@ def frequency_coherence_loss(images):
|
|
| 290 |
|
| 291 |
|
| 292 |
def color_harmony_loss(images):
|
| 293 |
-
"""Encourage harmonious color distributions"""
|
| 294 |
batch_size = images.size(0)
|
| 295 |
|
| 296 |
# convert to LAB-like space (approximation)
|
|
@@ -308,7 +310,6 @@ def color_harmony_loss(images):
|
|
| 308 |
|
| 309 |
|
| 310 |
def texture_diversity_loss(images):
|
| 311 |
-
"""Encourage multi-scale texture patterns"""
|
| 312 |
textures = []
|
| 313 |
for scale in [1, 2, 4]:
|
| 314 |
if scale > 1:
|
|
@@ -324,9 +325,10 @@ def texture_diversity_loss(images):
|
|
| 324 |
|
| 325 |
return F.relu(0.1 - diversity) # Penalize if diversity < 0.1
|
| 326 |
|
|
|
|
|
|
|
| 327 |
|
| 328 |
def combined_aesthetic_loss(features, images):
|
| 329 |
-
"""Enhanced loss with BALANCED weights"""
|
| 330 |
|
| 331 |
consistency = feature_consistency_loss(features, images)
|
| 332 |
variance = feature_variance_preservation_loss(features, images)
|
|
@@ -339,21 +341,21 @@ def combined_aesthetic_loss(features, images):
|
|
| 339 |
smoothness = tv_h + tv_w
|
| 340 |
|
| 341 |
total = (
|
| 342 |
-
10.0 * consistency +
|
| 343 |
-
0.05 * variance +
|
| 344 |
-
0.5 * freq_coherence +
|
| 345 |
-
0.2 * color_harmony +
|
| 346 |
-
0.01 * texture_div +
|
| 347 |
-
0.1 * smoothness
|
| 348 |
)
|
| 349 |
|
| 350 |
return total, {
|
| 351 |
-
'consistency': consistency
|
| 352 |
-
'variance': variance
|
| 353 |
-
'freq_coherence': freq_coherence
|
| 354 |
-
'color_harmony': color_harmony
|
| 355 |
-
'texture_div': texture_div
|
| 356 |
-
'smoothness': smoothness
|
| 357 |
}
|
| 358 |
|
| 359 |
def frequency_coherence_loss(images):
|
|
@@ -385,7 +387,7 @@ def frequency_coherence_loss(images):
|
|
| 385 |
|
| 386 |
|
| 387 |
def feature_variance_preservation_loss(features, images):
|
| 388 |
-
"""
|
| 389 |
batch_size = features.size(0)
|
| 390 |
if batch_size < 4:
|
| 391 |
return torch.tensor(0.0, device=features.device)
|
|
@@ -417,22 +419,19 @@ def hsv_to_rgb(h, s, v):
|
|
| 417 |
|
| 418 |
# ===================== Trainer =====================
|
| 419 |
def create_feature_explanation_grid(model, features, save_path):
|
| 420 |
-
|
| 421 |
-
Show how specific features affect the output
|
| 422 |
-
Systematic perturbation of individual features
|
| 423 |
-
"""
|
| 424 |
model.eval()
|
| 425 |
-
base_idx = 42 #
|
| 426 |
base_features = features[base_idx].copy()
|
| 427 |
|
| 428 |
-
#
|
| 429 |
feature_indices = [0, 3, 10, 14, 19, 24] # LOC, loops, nesting, comments, complexity, indentation
|
| 430 |
feature_names = [FEATURE_NAMES[i] for i in feature_indices]
|
| 431 |
|
| 432 |
fig, axes = plt.subplots(len(feature_indices), 5, figsize=(15, 3*len(feature_indices)))
|
| 433 |
|
| 434 |
for row, feat_idx in enumerate(feature_indices):
|
| 435 |
-
#
|
| 436 |
variations = []
|
| 437 |
for multiplier in [-2, -1, 0, 1, 2]:
|
| 438 |
varied = base_features.copy()
|
|
@@ -466,28 +465,23 @@ def compute_color_palette_from_features(features):
|
|
| 466 |
# Normalize to [0, 1]
|
| 467 |
f_norm = (features - features.min(0)) / (features.max(0) - features.min(0) + 1e-8)
|
| 468 |
|
| 469 |
-
# Base hue from structure
|
| 470 |
structure_score = f_norm[[0, 1, 2]].mean()
|
| 471 |
base_hue = structure_score * 0.7 # 0 (red) to 0.7 (blue)
|
| 472 |
|
| 473 |
-
# Saturation from control flow
|
| 474 |
control_score = f_norm[[3, 4]].mean()
|
| 475 |
saturation = 0.3 + control_score * 0.6
|
| 476 |
|
| 477 |
-
# Value from style
|
| 478 |
style_score = f_norm[[14, 15]].mean()
|
| 479 |
value = 0.4 + style_score * 0.5
|
| 480 |
|
| 481 |
-
# Create 4 colors with variation
|
| 482 |
palette = []
|
| 483 |
for shift in [-0.1, 0, 0.1, 0.2]:
|
| 484 |
hue = (base_hue + shift) % 1.0
|
| 485 |
palette.append(hsv_to_rgb(hue, saturation, value))
|
| 486 |
|
| 487 |
-
return np.array(palette).flatten()
|
| 488 |
|
| 489 |
def interpolate_code_features(model, features, idx1, idx2, steps=10):
|
| 490 |
-
"""Smooth transition between two code samples"""
|
| 491 |
model.eval()
|
| 492 |
|
| 493 |
f1 = features[idx1]
|
|
@@ -505,7 +499,7 @@ def interpolate_code_features(model, features, idx1, idx2, steps=10):
|
|
| 505 |
return images
|
| 506 |
|
| 507 |
|
| 508 |
-
class
|
| 509 |
def __init__(self, model, device='cpu'):
|
| 510 |
self.model = model.to(device)
|
| 511 |
self.device = device
|
|
@@ -564,12 +558,11 @@ class FeatureDrivenTrainer:
|
|
| 564 |
min_lr=1e-6
|
| 565 |
)
|
| 566 |
|
| 567 |
-
print(f"Training
|
| 568 |
-
print("Focus: Frequency coherence + color harmony + texture diversity")
|
| 569 |
|
| 570 |
for epoch in range(epochs):
|
| 571 |
avg_loss, components = self.train_epoch(train_loader, optimizer)
|
| 572 |
-
scheduler.step(avg_loss)
|
| 573 |
|
| 574 |
if (epoch + 1) % 10 == 0:
|
| 575 |
print(f"Epoch [{epoch+1}/{epochs}] - Loss: {avg_loss:.4f}")
|
|
@@ -642,9 +635,7 @@ class FeatureDrivenTrainer:
|
|
| 642 |
print(f"Samples saved to {save_path}")
|
| 643 |
|
| 644 |
def test_feature_consistency(self, features, save_path='results/consistency_test.png'):
|
| 645 |
-
|
| 646 |
-
Visualize that similar features produce similar images.
|
| 647 |
-
"""
|
| 648 |
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
| 649 |
self.model.eval()
|
| 650 |
|
|
@@ -689,7 +680,6 @@ class FeatureDrivenTrainer:
|
|
| 689 |
print(f"Consistency test saved to {save_path}")
|
| 690 |
|
| 691 |
|
| 692 |
-
# ===================== Utilities =====================
|
| 693 |
|
| 694 |
def prepare_data_loaders(features, batch_size=32):
|
| 695 |
dataset = CodeToImageDataset(features)
|
|
@@ -698,19 +688,17 @@ def prepare_data_loaders(features, batch_size=32):
|
|
| 698 |
return loader
|
| 699 |
|
| 700 |
|
| 701 |
-
# ===================== Main =====================
|
| 702 |
|
| 703 |
def main():
|
| 704 |
os.makedirs("models", exist_ok=True)
|
| 705 |
os.makedirs("results", exist_ok=True)
|
| 706 |
|
| 707 |
print("=" * 70)
|
| 708 |
-
print("
|
| 709 |
-
print("Features → Meaningful Visual Attributes")
|
| 710 |
print("=" * 70)
|
| 711 |
|
| 712 |
# Load features
|
| 713 |
-
print("\n
|
| 714 |
features_path = "data/features.npy"
|
| 715 |
if not os.path.exists(features_path):
|
| 716 |
raise FileNotFoundError(f"{features_path} not found")
|
|
@@ -719,33 +707,31 @@ def main():
|
|
| 719 |
print(f"Features shape: {features.shape}")
|
| 720 |
|
| 721 |
# Prepare data
|
| 722 |
-
print("\
|
| 723 |
loader = prepare_data_loaders(features, batch_size=32)
|
| 724 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 725 |
print(f"Device: {device}")
|
| 726 |
|
| 727 |
# Initialize model
|
| 728 |
-
print("\n
|
| 729 |
-
model =
|
| 730 |
param_count = sum(p.numel() for p in model.parameters())
|
| 731 |
print(f"Model parameters: {param_count:,}")
|
| 732 |
|
| 733 |
# Train model
|
| 734 |
-
print("\
|
| 735 |
-
trainer =
|
| 736 |
trainer.train(loader, epochs=100, lr=1e-3)
|
| 737 |
|
| 738 |
# Save results
|
| 739 |
print("\n[5/5] Saving results...")
|
| 740 |
-
trainer.save_model("models/
|
| 741 |
-
trainer.plot_losses("results/
|
| 742 |
-
trainer.generate_samples(features, n=25, save_path="results/
|
| 743 |
-
trainer.test_feature_consistency(features, save_path="results/
|
| 744 |
|
| 745 |
print("\n" + "=" * 70)
|
| 746 |
-
print("
|
| 747 |
-
print("=" * 70)
|
| 748 |
-
|
| 749 |
|
| 750 |
if __name__ == "__main__":
|
| 751 |
main()
|
|
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
FEATURE_NAMES = [
|
| 12 |
"lines_of_code", "num_functions", "num_classes", "num_loops",
|
|
|
|
| 19 |
]
|
| 20 |
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
class CodeToImageDataset(Dataset):
|
| 24 |
def __init__(self, features):
|
|
|
|
| 31 |
return self.features[idx]
|
| 32 |
|
| 33 |
|
|
|
|
| 34 |
|
| 35 |
+
class Generator(nn.Module):
|
| 36 |
"""
|
| 37 |
+
generates images with controlled chaos through:
|
| 38 |
+
Frequency-domain decomposition (low/mid/high)
|
| 39 |
+
Spatial composition layers
|
| 40 |
+
Feature-dependent color palettes
|
| 41 |
+
Texture injection at multiple scales
|
| 42 |
"""
|
| 43 |
def __init__(self, input_dim=25, image_size=32):
|
| 44 |
super().__init__()
|
| 45 |
self.image_size = image_size
|
| 46 |
|
| 47 |
+
# Feature groupin
|
| 48 |
self.structure_idx = [0, 1, 2, 10, 19, 20]
|
| 49 |
self.control_idx = [3, 4, 9]
|
| 50 |
self.operations_idx = [5, 7, 8, 6]
|
| 51 |
self.style_idx = [14, 15, 24, 23]
|
| 52 |
self.advanced_idx = [12, 13, 16, 17, 18, 11, 21, 22]
|
| 53 |
|
| 54 |
+
#overall composition, large shapes (structure features)
|
| 55 |
self.low_freq_encoder = nn.Sequential(
|
| 56 |
nn.Linear(len(self.structure_idx), 256),
|
| 57 |
nn.LayerNorm(256),
|
|
|
|
| 60 |
nn.Linear(256, 512)
|
| 61 |
)
|
| 62 |
|
| 63 |
+
# patterns, textures (control + operations)
|
| 64 |
self.mid_freq_encoder = nn.Sequential(
|
| 65 |
nn.Linear(len(self.control_idx) + len(self.operations_idx), 256),
|
| 66 |
nn.LayerNorm(256),
|
|
|
|
| 69 |
nn.Linear(256, 512)
|
| 70 |
)
|
| 71 |
|
| 72 |
+
# details, noise (style + advanced)
|
| 73 |
self.high_freq_encoder = nn.Sequential(
|
| 74 |
nn.Linear(len(self.style_idx) + len(self.advanced_idx), 256),
|
| 75 |
nn.LayerNorm(256),
|
|
|
|
| 85 |
nn.Linear(128, 12) # 4 colors × 3 channels (HSV or RGB)
|
| 86 |
)
|
| 87 |
|
| 88 |
+
# WHERE patterns appear (position, scale, rotation)
|
| 89 |
self.composition_net = nn.Sequential(
|
| 90 |
nn.Linear(512, 256),
|
| 91 |
nn.LayerNorm(256),
|
|
|
|
| 93 |
nn.Linear(256, 6) # [center_x, center_y, scale, rotation, flow_x, flow_y]
|
| 94 |
)
|
| 95 |
|
| 96 |
+
# projection
|
| 97 |
self.low_to_spatial = nn.Linear(512, 8 * 8 * 128)
|
| 98 |
self.mid_to_spatial = nn.Linear(512, 16 * 16 * 64)
|
| 99 |
self.high_to_spatial = nn.Linear(512, 32 * 32 * 32)
|
| 100 |
|
| 101 |
+
# Low(8x8 -> 32x32)
|
| 102 |
self.low_decoder = nn.Sequential(
|
| 103 |
nn.ConvTranspose2d(128, 64, 4, 2, 1), # 8->16
|
| 104 |
nn.GroupNorm(8, 64),
|
|
|
|
| 108 |
nn.GELU()
|
| 109 |
)
|
| 110 |
|
| 111 |
+
# Mid(16x16 -> 32x32)
|
| 112 |
self.mid_decoder = nn.Sequential(
|
| 113 |
nn.ConvTranspose2d(64, 32, 4, 2, 1), # 16->32
|
| 114 |
nn.GroupNorm(8, 32),
|
| 115 |
nn.GELU()
|
| 116 |
)
|
| 117 |
|
| 118 |
+
# High pth (32x32)
|
| 119 |
self.high_decoder = nn.Sequential(
|
| 120 |
nn.Conv2d(32, 32, 3, 1, 1),
|
| 121 |
nn.GroupNorm(8, 32),
|
|
|
|
| 123 |
)
|
| 124 |
|
| 125 |
self.fusion = nn.Sequential(
|
| 126 |
+
nn.Conv2d(96, 64, 3, 1, 1),
|
| 127 |
nn.GroupNorm(8, 64),
|
| 128 |
nn.GELU(),
|
| 129 |
nn.Conv2d(64, 32, 3, 1, 1),
|
|
|
|
| 149 |
nn.init.constant_(m.bias, 0)
|
| 150 |
|
| 151 |
def generate_perlin_noise(self, batch_size, size, device):
|
|
|
|
| 152 |
grid_size = 4
|
| 153 |
grid = torch.randn(batch_size, 2, grid_size, grid_size, device=device)
|
| 154 |
noise = F.interpolate(grid, size=(size, size), mode='bicubic', align_corners=True)
|
| 155 |
+
return noise[:, 0:1] # single channel
|
| 156 |
|
| 157 |
def apply_color_palette(self, grayscale, palette):
|
|
|
|
| 158 |
batch_size = grayscale.size(0)
|
| 159 |
palette = palette.view(batch_size, 4, 3) # 4 clors, 3 channels
|
| 160 |
|
|
|
|
| 167 |
channel_colors = palette[:, :, i] # (batch, 4)
|
| 168 |
stops = torch.linspace(0, 1, 4, device=grayscale.device)
|
| 169 |
|
|
|
|
| 170 |
result = torch.zeros_like(gray_norm)
|
| 171 |
for j in range(3):
|
| 172 |
mask = (gray_norm >= stops[j]) & (gray_norm < stops[j+1])
|
|
|
|
| 185 |
batch_size = x.size(0)
|
| 186 |
device = x.device
|
| 187 |
|
| 188 |
+
# extract feature groups
|
| 189 |
structure = x[:, self.structure_idx]
|
| 190 |
control = x[:, self.control_idx]
|
| 191 |
operations = x[:, self.operations_idx]
|
| 192 |
style = x[:, self.style_idx]
|
| 193 |
advanced = x[:, self.advanced_idx]
|
| 194 |
|
| 195 |
+
# encode to frequency bands
|
| 196 |
low_freq = self.low_freq_encoder(structure)
|
| 197 |
mid_freq = self.mid_freq_encoder(torch.cat([control, operations], dim=1))
|
| 198 |
high_freq = self.high_freq_encoder(torch.cat([style, advanced], dim=1))
|
| 199 |
|
| 200 |
+
# generate color palette
|
| 201 |
palette = self.color_palette_net(x)
|
| 202 |
|
| 203 |
+
# generate composition parameters
|
| 204 |
composition_params = self.composition_net(low_freq)
|
| 205 |
composition_params = torch.tanh(composition_params)
|
| 206 |
|
| 207 |
+
# Project
|
| 208 |
low_spatial = self.low_to_spatial(low_freq).view(batch_size, 128, 8, 8)
|
| 209 |
mid_spatial = self.mid_to_spatial(mid_freq).view(batch_size, 64, 16, 16)
|
| 210 |
high_spatial = self.high_to_spatial(high_freq).view(batch_size, 32, 32, 32)
|
| 211 |
|
| 212 |
+
# Decode
|
| 213 |
low_decoded = self.low_decoder(low_spatial) # (batch, 32, 32, 32)
|
| 214 |
mid_decoded = self.mid_decoder(mid_spatial) # (batch, 32, 32, 32)
|
| 215 |
high_decoded = self.high_decoder(high_spatial) # (batch, 32, 32, 32)
|
| 216 |
|
| 217 |
+
# Apply
|
|
|
|
| 218 |
theta = composition_params[:, 3:4] # rotation
|
| 219 |
scale = 0.5 + composition_params[:, 2:3] # scale
|
| 220 |
tx, ty = composition_params[:, 0:1], composition_params[:, 1:2]
|
|
|
|
| 232 |
grid = F.affine_grid(affine_matrix, low_decoded.size(), align_corners=False)
|
| 233 |
low_decoded = F.grid_sample(low_decoded, grid, align_corners=False, padding_mode='reflection')
|
| 234 |
|
|
|
|
| 235 |
merged = torch.cat([low_decoded, mid_decoded, high_decoded], dim=1)
|
| 236 |
+
fused = self.fusion(merged)
|
| 237 |
|
| 238 |
+
# Add controlled Perlin noise
|
| 239 |
noise_scale = self.noise_strength(x)
|
| 240 |
perlin = self.generate_perlin_noise(batch_size, 32, device)
|
| 241 |
perlin = perlin.expand(-1, 3, -1, -1)
|
| 242 |
fused = fused + noise_scale.view(-1, 1, 1, 1) * perlin * 0.3
|
| 243 |
|
| 244 |
+
# Convert to grayscale
|
| 245 |
grayscale = fused.mean(dim=1, keepdim=True)
|
| 246 |
|
|
|
|
| 247 |
colored = self.apply_color_palette(grayscale, palette)
|
| 248 |
|
|
|
|
| 249 |
output = torch.tanh(colored)
|
| 250 |
|
| 251 |
return output
|
| 252 |
|
| 253 |
+
def feature_consistency_loss(features, images):
|
| 254 |
+
"""Ensure feature similarity leads to image similarity"""
|
| 255 |
+
batch_size = features.size(0)
|
| 256 |
+
if batch_size < 4:
|
| 257 |
+
return torch.tensor(0.0, device=features.device)
|
| 258 |
+
|
| 259 |
+
feat_dists = torch.cdist(features, features)
|
| 260 |
+
img_flat = images.view(batch_size, -1)
|
| 261 |
+
img_dists = torch.cdist(img_flat, img_flat)
|
| 262 |
+
|
| 263 |
+
feat_dists = feat_dists / (feat_dists.max() + 1e-8)
|
| 264 |
+
img_dists = img_dists / (img_dists.max() + 1e-8)
|
| 265 |
+
|
| 266 |
+
consistency = F.mse_loss(feat_dists, img_dists)
|
| 267 |
+
|
| 268 |
+
return consistency
|
| 269 |
|
| 270 |
def frequency_coherence_loss(images):
|
|
|
|
| 271 |
# FFT decomposition
|
| 272 |
fft = torch.fft.fft2(images)
|
| 273 |
fft_shifted = torch.fft.fftshift(fft)
|
|
|
|
| 293 |
|
| 294 |
|
| 295 |
def color_harmony_loss(images):
|
|
|
|
| 296 |
batch_size = images.size(0)
|
| 297 |
|
| 298 |
# convert to LAB-like space (approximation)
|
|
|
|
| 310 |
|
| 311 |
|
| 312 |
def texture_diversity_loss(images):
|
|
|
|
| 313 |
textures = []
|
| 314 |
for scale in [1, 2, 4]:
|
| 315 |
if scale > 1:
|
|
|
|
| 325 |
|
| 326 |
return F.relu(0.1 - diversity) # Penalize if diversity < 0.1
|
| 327 |
|
| 328 |
+
def safe_item(x):
|
| 329 |
+
return x.item() if isinstance(x, torch.Tensor) else float(x)
|
| 330 |
|
| 331 |
def combined_aesthetic_loss(features, images):
|
|
|
|
| 332 |
|
| 333 |
consistency = feature_consistency_loss(features, images)
|
| 334 |
variance = feature_variance_preservation_loss(features, images)
|
|
|
|
| 341 |
smoothness = tv_h + tv_w
|
| 342 |
|
| 343 |
total = (
|
| 344 |
+
10.0 * consistency +
|
| 345 |
+
0.05 * variance +
|
| 346 |
+
0.5 * freq_coherence +
|
| 347 |
+
0.2 * color_harmony +
|
| 348 |
+
0.01 * texture_div +
|
| 349 |
+
0.1 * smoothness
|
| 350 |
)
|
| 351 |
|
| 352 |
return total, {
|
| 353 |
+
'consistency': safe_item(consistency),
|
| 354 |
+
'variance': safe_item(variance),
|
| 355 |
+
'freq_coherence': safe_item(freq_coherence),
|
| 356 |
+
'color_harmony': safe_item(color_harmony),
|
| 357 |
+
'texture_div': safe_item(texture_div),
|
| 358 |
+
'smoothness': safe_item(smoothness)
|
| 359 |
}
|
| 360 |
|
| 361 |
def frequency_coherence_loss(images):
|
|
|
|
| 387 |
|
| 388 |
|
| 389 |
def feature_variance_preservation_loss(features, images):
|
| 390 |
+
"""this function ensure each feature dimension contributes to image variance"""
|
| 391 |
batch_size = features.size(0)
|
| 392 |
if batch_size < 4:
|
| 393 |
return torch.tensor(0.0, device=features.device)
|
|
|
|
| 419 |
|
| 420 |
# ===================== Trainer =====================
|
| 421 |
def create_feature_explanation_grid(model, features, save_path):
|
| 422 |
+
|
|
|
|
|
|
|
|
|
|
| 423 |
model.eval()
|
| 424 |
+
base_idx = 42 # random sample
|
| 425 |
base_features = features[base_idx].copy()
|
| 426 |
|
| 427 |
+
# 6 features to visualize
|
| 428 |
feature_indices = [0, 3, 10, 14, 19, 24] # LOC, loops, nesting, comments, complexity, indentation
|
| 429 |
feature_names = [FEATURE_NAMES[i] for i in feature_indices]
|
| 430 |
|
| 431 |
fig, axes = plt.subplots(len(feature_indices), 5, figsize=(15, 3*len(feature_indices)))
|
| 432 |
|
| 433 |
for row, feat_idx in enumerate(feature_indices):
|
| 434 |
+
# create variations: [-2σ, -1σ, 0, +1σ, +2σ]
|
| 435 |
variations = []
|
| 436 |
for multiplier in [-2, -1, 0, 1, 2]:
|
| 437 |
varied = base_features.copy()
|
|
|
|
| 465 |
# Normalize to [0, 1]
|
| 466 |
f_norm = (features - features.min(0)) / (features.max(0) - features.min(0) + 1e-8)
|
| 467 |
|
|
|
|
| 468 |
structure_score = f_norm[[0, 1, 2]].mean()
|
| 469 |
base_hue = structure_score * 0.7 # 0 (red) to 0.7 (blue)
|
| 470 |
|
|
|
|
| 471 |
control_score = f_norm[[3, 4]].mean()
|
| 472 |
saturation = 0.3 + control_score * 0.6
|
| 473 |
|
|
|
|
| 474 |
style_score = f_norm[[14, 15]].mean()
|
| 475 |
value = 0.4 + style_score * 0.5
|
| 476 |
|
|
|
|
| 477 |
palette = []
|
| 478 |
for shift in [-0.1, 0, 0.1, 0.2]:
|
| 479 |
hue = (base_hue + shift) % 1.0
|
| 480 |
palette.append(hsv_to_rgb(hue, saturation, value))
|
| 481 |
|
| 482 |
+
return np.array(palette).flatten()
|
| 483 |
|
| 484 |
def interpolate_code_features(model, features, idx1, idx2, steps=10):
|
|
|
|
| 485 |
model.eval()
|
| 486 |
|
| 487 |
f1 = features[idx1]
|
|
|
|
| 499 |
return images
|
| 500 |
|
| 501 |
|
| 502 |
+
class Trainer:
|
| 503 |
def __init__(self, model, device='cpu'):
|
| 504 |
self.model = model.to(device)
|
| 505 |
self.device = device
|
|
|
|
| 558 |
min_lr=1e-6
|
| 559 |
)
|
| 560 |
|
| 561 |
+
print(f"Training model for {epochs} epochs on {self.device}...")
|
|
|
|
| 562 |
|
| 563 |
for epoch in range(epochs):
|
| 564 |
avg_loss, components = self.train_epoch(train_loader, optimizer)
|
| 565 |
+
scheduler.step(avg_loss)
|
| 566 |
|
| 567 |
if (epoch + 1) % 10 == 0:
|
| 568 |
print(f"Epoch [{epoch+1}/{epochs}] - Loss: {avg_loss:.4f}")
|
|
|
|
| 635 |
print(f"Samples saved to {save_path}")
|
| 636 |
|
| 637 |
def test_feature_consistency(self, features, save_path='results/consistency_test.png'):
|
| 638 |
+
|
|
|
|
|
|
|
| 639 |
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
| 640 |
self.model.eval()
|
| 641 |
|
|
|
|
| 680 |
print(f"Consistency test saved to {save_path}")
|
| 681 |
|
| 682 |
|
|
|
|
| 683 |
|
| 684 |
def prepare_data_loaders(features, batch_size=32):
|
| 685 |
dataset = CodeToImageDataset(features)
|
|
|
|
| 688 |
return loader
|
| 689 |
|
| 690 |
|
|
|
|
| 691 |
|
| 692 |
def main():
|
| 693 |
os.makedirs("models", exist_ok=True)
|
| 694 |
os.makedirs("results", exist_ok=True)
|
| 695 |
|
| 696 |
print("=" * 70)
|
| 697 |
+
print(" Code-to-Image Generator (Final Version)")
|
|
|
|
| 698 |
print("=" * 70)
|
| 699 |
|
| 700 |
# Load features
|
| 701 |
+
print("\n Loading features...")
|
| 702 |
features_path = "data/features.npy"
|
| 703 |
if not os.path.exists(features_path):
|
| 704 |
raise FileNotFoundError(f"{features_path} not found")
|
|
|
|
| 707 |
print(f"Features shape: {features.shape}")
|
| 708 |
|
| 709 |
# Prepare data
|
| 710 |
+
print("\nPreparing data loaders...")
|
| 711 |
loader = prepare_data_loaders(features, batch_size=32)
|
| 712 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 713 |
print(f"Device: {device}")
|
| 714 |
|
| 715 |
# Initialize model
|
| 716 |
+
print("\n InitializingCNN model...")
|
| 717 |
+
model = Generator(input_dim=features.shape[1], image_size=32)
|
| 718 |
param_count = sum(p.numel() for p in model.parameters())
|
| 719 |
print(f"Model parameters: {param_count:,}")
|
| 720 |
|
| 721 |
# Train model
|
| 722 |
+
print("\nTraining model...")
|
| 723 |
+
trainer = Trainer(model, device=device)
|
| 724 |
trainer.train(loader, epochs=100, lr=1e-3)
|
| 725 |
|
| 726 |
# Save results
|
| 727 |
print("\n[5/5] Saving results...")
|
| 728 |
+
trainer.save_model("models/model_32.pth")
|
| 729 |
+
trainer.plot_losses("results/losses.png")
|
| 730 |
+
trainer.generate_samples(features, n=25, save_path="results/samples.png")
|
| 731 |
+
trainer.test_feature_consistency(features, save_path="results/consistency.png")
|
| 732 |
|
| 733 |
print("\n" + "=" * 70)
|
| 734 |
+
print("Check results/ folder.")
|
|
|
|
|
|
|
| 735 |
|
| 736 |
if __name__ == "__main__":
|
| 737 |
main()
|
models/{chotic.pth → model_32.pth}
RENAMED
|
File without changes
|