muneebashraf's picture
commit
304d74e
raw
history blame contribute delete
863 Bytes
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
# Load the model and tokenizer
model_name = "Salesforce/blip-image-captioning-large"
processor = BlipProcessor.from_pretrained(model_name)
model = BlipForConditionalGeneration.from_pretrained(model_name)
def generate_caption(image):
# Preprocess the image
inputs = processor(images=image, return_tensors="pt")
# Generate caption using the model
caption = model.generate(**inputs)
# Decode the output caption
decoded_caption = processor.decode(caption[0], skip_special_tokens=True)
return decoded_caption
# Define the Gradio interface
inputs = gr.inputs.Image(label="Upload an image")
outputs = gr.outputs.Textbox(label="Generated Caption")
# Create the Gradio app
gr.Interface(fn=generate_caption, inputs=inputs, outputs=outputs).launch()