Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision | |
import torch.nn.functional as F | |
import numpy as np | |
from PIL import Image, ImageColor | |
from diffusers import DDPMPipeline | |
from diffusers import DDIMScheduler | |
device = 'mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Load the pretrained pipeline | |
pipeline_name = 'muneebable/ddpm-celebahq-finetuned-anime-art' | |
image_pipe = DDPMPipeline.from_pretrained(pipeline_name).to(device) | |
# Set up the scheduler | |
scheduler = DDIMScheduler.from_pretrained(pipeline_name) | |
scheduler.set_timesteps(num_inference_steps=20) | |
# The guidance function | |
def color_loss(images, target_color=(0.1, 0.9, 0.5)): | |
"""Given a target color (R, G, B) return a loss for how far away on average | |
the images' pixels are from that color. Defaults to a light teal: (0.1, 0.9, 0.5) """ | |
target = torch.tensor(target_color).to(images.device) * 2 - 1 # Map target color to (-1, 1) | |
target = target[None, :, None, None] # Get shape right to work with the images (b, c, h, w) | |
error = torch.abs(images - target).mean() # Mean absolute difference between the image pixels and the target color | |
return error | |
# And the core function to generate an image given the relevant inputs | |
def generate(color, guidance_loss_scale): | |
target_color = ImageColor.getcolor(color, "RGB") # Target color as RGB | |
target_color = [a/255 for a in target_color] # Rescale from (0, 255) to (0, 1) | |
x = torch.randn(1, 3, 256, 256).to(device) | |
for i, t in enumerate(scheduler.timesteps): | |
model_input = scheduler.scale_model_input(x, t) | |
with torch.no_grad(): | |
noise_pred = image_pipe.unet(model_input, t)["sample"] | |
x = x.detach().requires_grad_() | |
x0 = scheduler.step(noise_pred, t, x).pred_original_sample | |
loss = color_loss(x0, target_color) * guidance_loss_scale | |
cond_grad = -torch.autograd.grad(loss, x)[0] | |
x = x.detach() + cond_grad | |
x = scheduler.step(noise_pred, t, x).prev_sample | |
grid = torchvision.utils.make_grid(x, nrow=4) | |
im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5 | |
im = (im * 255).byte().numpy() # Convert to uint8 numpy array | |
im = Image.fromarray(im) | |
im.save('test.jpeg') | |
return im | |
# See the gradio docs for the types of inputs and outputs available | |
inputs = [ | |
gr.ColorPicker(label="color", value='55FFAA'), # Add any inputs you need here | |
gr.Slider(label="guidance_scale", minimum=0, maximum=30, value=3) | |
] | |
outputs = gr.Image(label="result") | |
# Setting up a minimal interface to our function: | |
demo = gr.Interface( | |
fn=generate, | |
inputs=inputs, | |
outputs=outputs, | |
examples=[ | |
["#BB2266", 3],["#44CCAA", 5] # You can provide some example inputs to get people started | |
], | |
) | |
# And launching | |
if __name__ == "__main__": | |
demo.launch() # Removed enable_queue=True |