Spaces:
Runtime error
Runtime error
Ubuntu
commited on
Commit
β’
6e6426e
1
Parent(s):
3bc69b8
fixed issuse with model with dress
Browse files- .gitignore +15 -0
- app.py +62 -14
- celery_worker.py +63 -0
- ootd/inference_ootd_dc.py +6 -0
- ootd/pipelines_ootd/pipeline_ootd.py +88 -77
- preprocess/humanparsing/parsing_api.py +70 -0
- preprocess/openpose/run_openpose.py +2 -2
- requirements.txt +3 -1
- run/cloths_db.py +2 -2
- run/gradio_ootd.py +202 -82
- run/testing.py +167 -0
- run/utils_ootd.py +6 -1
.gitignore
CHANGED
@@ -19,3 +19,18 @@ run/examples/model/male/male_side.png
|
|
19 |
run/examples/model/male/male_small_38.png
|
20 |
run/examples/model/male/male_small.png
|
21 |
run/examples/model/male/male_xl_45.png
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
run/examples/model/male/male_small_38.png
|
20 |
run/examples/model/male/male_small.png
|
21 |
run/examples/model/male/male_xl_45.png
|
22 |
+
__pycache__/app.cpython-310.pyc
|
23 |
+
__pycache__/app2.cpython-310.pyc
|
24 |
+
__pycache__/celery_worker.cpython-310.pyc
|
25 |
+
ootd/pipelines_ootd/__pycache__/pipeline_ootd.cpython-310.pyc
|
26 |
+
ootd/pipelines_ootd/__pycache__/pipeline_ootd.cpython-310.pyc
|
27 |
+
ootd/pipelines_ootd/__pycache__/pipeline_ootd.cpython-310.pyc
|
28 |
+
run/examples/garment/male_tshirt1.png
|
29 |
+
colored_parsing.png
|
30 |
+
gram_img.png
|
31 |
+
vton_img.png
|
32 |
+
temp_images/garm_input.png
|
33 |
+
temp_images/vton_input.png
|
34 |
+
|
35 |
+
ootd/pipelines_ootd/__pycache__/pipeline_ootd.cpython-310.pyc
|
36 |
+
preprocess/humanparsing/datasets/__pycache__/simple_extractor_dataset.cpython-310.pyc
|
app.py
CHANGED
@@ -3,6 +3,8 @@ from flask_cors import CORS
|
|
3 |
import logging
|
4 |
import gc
|
5 |
import os
|
|
|
|
|
6 |
from io import BytesIO
|
7 |
from pathlib import Path
|
8 |
import sys
|
@@ -19,6 +21,7 @@ from ootd.inference_ootd_dc import OOTDiffusionDC
|
|
19 |
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
|
20 |
sys.path.insert(0, str(PROJECT_ROOT))
|
21 |
|
|
|
22 |
|
23 |
|
24 |
#run python garbage collector and nvidia cuda clear memory
|
@@ -29,6 +32,8 @@ torch.cuda.empty_cache()
|
|
29 |
# Setup Flask server
|
30 |
app = Flask(__name__)
|
31 |
CORS(app, origins="*") # Enable CORS for the entire app
|
|
|
|
|
32 |
|
33 |
|
34 |
logger = logging.getLogger()
|
@@ -58,15 +63,32 @@ if not os.path.exists(UPLOAD_FOLDER):
|
|
58 |
os.makedirs(UPLOAD_FOLDER)
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def process_dc(vton_img, garm_img, category):
|
62 |
model_type = 'dc'
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
with torch.no_grad():
|
72 |
# openpose_model.preprocessor.body_estimation.model.to('cuda')
|
@@ -74,8 +96,8 @@ def process_dc(vton_img, garm_img, category):
|
|
74 |
# ootd_model_dc.image_encoder.to('cuda')
|
75 |
# ootd_model_dc.text_encoder.to('cuda')
|
76 |
|
77 |
-
garm_img = Image.open(garm_img).
|
78 |
-
vton_img = Image.open(vton_img).
|
79 |
keypoints = openpose_model(vton_img.resize((384, 512)))
|
80 |
|
81 |
print(len(keypoints["pose_keypoints_2d"]))
|
@@ -134,6 +156,19 @@ def process_dc(vton_img, garm_img, category):
|
|
134 |
|
135 |
print(f'category is {category}')
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
images = ootd_model_dc(
|
138 |
model_type=model_type,
|
139 |
category=category_dict[category],
|
@@ -141,12 +176,15 @@ def process_dc(vton_img, garm_img, category):
|
|
141 |
image_vton=masked_vton_img,
|
142 |
mask=mask,
|
143 |
image_ori=vton_img,
|
144 |
-
num_samples=
|
145 |
num_steps=10,
|
146 |
-
image_scale=
|
147 |
-
seed
|
|
|
|
|
148 |
)
|
149 |
|
|
|
150 |
return images
|
151 |
|
152 |
|
@@ -161,7 +199,9 @@ def root():
|
|
161 |
response_data = {"message": "Internal server Error"}
|
162 |
return jsonify(response_data), 500
|
163 |
|
164 |
-
|
|
|
|
|
165 |
|
166 |
#write Flask api name "generate" with POST method that will input 2 images and return 1 image
|
167 |
@app.route('/generate', methods=['POST'])
|
@@ -193,9 +233,14 @@ def generate():
|
|
193 |
# category = 2
|
194 |
|
195 |
try:
|
|
|
196 |
garm_img = request.files['garm_img']
|
197 |
vton_img = request.files['vton_img']
|
198 |
-
|
|
|
|
|
|
|
|
|
199 |
|
200 |
# Save the uploaded files
|
201 |
garm_path = os.path.join(UPLOAD_FOLDER, 'garm_input.png')
|
@@ -222,6 +267,9 @@ def generate():
|
|
222 |
output_image.save(img_byte_arr, format='PNG')
|
223 |
img_byte_arr = img_byte_arr.getvalue()
|
224 |
|
|
|
|
|
|
|
225 |
return Response(img_byte_arr, mimetype='image/png')
|
226 |
|
227 |
except Exception as e:
|
@@ -239,4 +287,4 @@ if __name__ == '__main__':
|
|
239 |
|
240 |
|
241 |
|
242 |
-
# nohup gunicorn -b 0.0.0.0:5003 sentiment_api:app &
|
|
|
3 |
import logging
|
4 |
import gc
|
5 |
import os
|
6 |
+
from threading import Thread
|
7 |
+
from flask_sse import sse
|
8 |
from io import BytesIO
|
9 |
from pathlib import Path
|
10 |
import sys
|
|
|
21 |
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
|
22 |
sys.path.insert(0, str(PROJECT_ROOT))
|
23 |
|
24 |
+
from queue import Queue
|
25 |
|
26 |
|
27 |
#run python garbage collector and nvidia cuda clear memory
|
|
|
32 |
# Setup Flask server
|
33 |
app = Flask(__name__)
|
34 |
CORS(app, origins="*") # Enable CORS for the entire app
|
35 |
+
app.config["REDIS_URL"] = "redis://localhost:6379"
|
36 |
+
app.register_blueprint(sse, url_prefix='/stream')
|
37 |
|
38 |
|
39 |
logger = logging.getLogger()
|
|
|
63 |
os.makedirs(UPLOAD_FOLDER)
|
64 |
|
65 |
|
66 |
+
# progress_queue = Queue()
|
67 |
+
|
68 |
+
# def progress_callback(step, total_steps):
|
69 |
+
# if total_steps is not None and total_steps > 0:
|
70 |
+
# progress = int((step + 1) / total_steps * 100)
|
71 |
+
# progress_queue.put(progress)
|
72 |
+
# else:
|
73 |
+
# progress_queue.put(step + 1)
|
74 |
+
|
75 |
+
def progress_callback(step, total_steps):
|
76 |
+
if total_steps is not None and total_steps > 0:
|
77 |
+
progress = int((step + 1) / total_steps * 100)
|
78 |
+
sse.publish({"progress": progress}, type='progress')
|
79 |
+
else:
|
80 |
+
sse.publish({"step": step + 1}, type='progress')
|
81 |
+
|
82 |
+
|
83 |
def process_dc(vton_img, garm_img, category):
|
84 |
model_type = 'dc'
|
85 |
|
86 |
+
if category == 'Upper-body':
|
87 |
+
category = 0
|
88 |
+
elif category == 'Lower-body':
|
89 |
+
category = 1
|
90 |
+
else:
|
91 |
+
category = 2
|
92 |
|
93 |
with torch.no_grad():
|
94 |
# openpose_model.preprocessor.body_estimation.model.to('cuda')
|
|
|
96 |
# ootd_model_dc.image_encoder.to('cuda')
|
97 |
# ootd_model_dc.text_encoder.to('cuda')
|
98 |
|
99 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
100 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
101 |
keypoints = openpose_model(vton_img.resize((384, 512)))
|
102 |
|
103 |
print(len(keypoints["pose_keypoints_2d"]))
|
|
|
156 |
|
157 |
print(f'category is {category}')
|
158 |
|
159 |
+
# images = ootd_model_dc(
|
160 |
+
# model_type=model_type,
|
161 |
+
# category=category_dict[category],
|
162 |
+
# image_garm=garm_img,
|
163 |
+
# image_vton=masked_vton_img,
|
164 |
+
# mask=mask,
|
165 |
+
# image_ori=vton_img,
|
166 |
+
# num_samples=3,
|
167 |
+
# num_steps=20,
|
168 |
+
# image_scale= 2.0,
|
169 |
+
# seed=-1,
|
170 |
+
# )
|
171 |
+
|
172 |
images = ootd_model_dc(
|
173 |
model_type=model_type,
|
174 |
category=category_dict[category],
|
|
|
176 |
image_vton=masked_vton_img,
|
177 |
mask=mask,
|
178 |
image_ori=vton_img,
|
179 |
+
num_samples=2,
|
180 |
num_steps=10,
|
181 |
+
image_scale=2.0,
|
182 |
+
seed=42,
|
183 |
+
progress_callback=progress_callback,
|
184 |
+
progress_interval=1, # Update progress every step
|
185 |
)
|
186 |
|
187 |
+
|
188 |
return images
|
189 |
|
190 |
|
|
|
199 |
response_data = {"message": "Internal server Error"}
|
200 |
return jsonify(response_data), 500
|
201 |
|
202 |
+
@app.route('/stream')
|
203 |
+
def stream():
|
204 |
+
return Response(sse.stream(), content_type='text/event-stream')
|
205 |
|
206 |
#write Flask api name "generate" with POST method that will input 2 images and return 1 image
|
207 |
@app.route('/generate', methods=['POST'])
|
|
|
233 |
# category = 2
|
234 |
|
235 |
try:
|
236 |
+
cloths_type = ["Upper-body", "Lower-body", "Dress"]
|
237 |
garm_img = request.files['garm_img']
|
238 |
vton_img = request.files['vton_img']
|
239 |
+
cat = request.form['category']
|
240 |
+
|
241 |
+
print(f'category is {cat}')
|
242 |
+
|
243 |
+
category =cloths_type[int(cat)] # Default to Upper-body if not specified
|
244 |
|
245 |
# Save the uploaded files
|
246 |
garm_path = os.path.join(UPLOAD_FOLDER, 'garm_input.png')
|
|
|
267 |
output_image.save(img_byte_arr, format='PNG')
|
268 |
img_byte_arr = img_byte_arr.getvalue()
|
269 |
|
270 |
+
# Send the final "complete" event via SSE
|
271 |
+
sse.publish({"message": "Processing complete"}, type='complete')
|
272 |
+
|
273 |
return Response(img_byte_arr, mimetype='image/png')
|
274 |
|
275 |
except Exception as e:
|
|
|
287 |
|
288 |
|
289 |
|
290 |
+
# nohup gunicorn -b 0.0.0.0:5003 sentiment_api:app &
|
celery_worker.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from celery import Celery
|
2 |
+
from flask import current_app
|
3 |
+
from app2 import app, sse # Import your Flask app and SSE
|
4 |
+
import uuid
|
5 |
+
import os
|
6 |
+
|
7 |
+
# import threading
|
8 |
+
celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL'])
|
9 |
+
celery.conf.update(app.config)
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# OUTPUT_FOLDER = 'path/to/output/folder'
|
14 |
+
# image_results = {}
|
15 |
+
# image_results_lock = threading.Lock()
|
16 |
+
|
17 |
+
|
18 |
+
# def create_progress_callback(session_id):
|
19 |
+
# def progress_callback(step, total_steps):
|
20 |
+
# progress = int((step + 1) / total_steps * 100)
|
21 |
+
# print(f"Publishing progress {progress} for session {session_id}")
|
22 |
+
# sse.publish({"progress": progress}, type='progress', channel=session_id)
|
23 |
+
# return progress_callback
|
24 |
+
|
25 |
+
@celery.task(bind=True)
|
26 |
+
def process_image(self, session_id, garm_path, vton_path, category):
|
27 |
+
try:
|
28 |
+
print(f"Starting process_image task for session {session_id}")
|
29 |
+
|
30 |
+
progress_callback = create_progress_callback(session_id)
|
31 |
+
|
32 |
+
output_images = process_dc(garm_img=garm_path,
|
33 |
+
vton_img=vton_path,
|
34 |
+
category=category,
|
35 |
+
progress_callback=progress_callback)
|
36 |
+
|
37 |
+
if not output_images:
|
38 |
+
sse.publish({"error": "No output image generated"}, type='error', channel=session_id)
|
39 |
+
return None
|
40 |
+
|
41 |
+
output_image = output_images[0]
|
42 |
+
|
43 |
+
# Generate a UUID for the output image
|
44 |
+
image_uuid = str(uuid.uuid4())
|
45 |
+
|
46 |
+
# Create the output filename with the UUID
|
47 |
+
output_filename = f"{image_uuid}.png"
|
48 |
+
output_path = os.path.join(OUTPUT_FOLDER, output_filename)
|
49 |
+
|
50 |
+
# Save the output image
|
51 |
+
output_image.save(output_path, format='PNG')
|
52 |
+
|
53 |
+
# Add the UUID and path to the image_results map
|
54 |
+
with image_results_lock:
|
55 |
+
image_results[image_uuid] = output_path
|
56 |
+
|
57 |
+
sse.publish({"message": "Processing complete", "uuid": image_uuid}, type='complete', channel=session_id)
|
58 |
+
|
59 |
+
return image_uuid
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
sse.publish({"error": str(e)}, type='error', channel=session_id)
|
63 |
+
return print(f"panic in process_image: {str(e)}")
|
ootd/inference_ootd_dc.py
CHANGED
@@ -99,6 +99,9 @@ class OOTDiffusionDC:
|
|
99 |
num_steps=20,
|
100 |
image_scale=1.0,
|
101 |
seed=-1,
|
|
|
|
|
|
|
102 |
):
|
103 |
if seed == -1:
|
104 |
random.seed(time.time())
|
@@ -128,6 +131,9 @@ class OOTDiffusionDC:
|
|
128 |
image_guidance_scale=image_scale,
|
129 |
num_images_per_prompt=num_samples,
|
130 |
generator=generator,
|
|
|
|
|
|
|
131 |
).images
|
132 |
|
133 |
return images
|
|
|
99 |
num_steps=20,
|
100 |
image_scale=1.0,
|
101 |
seed=-1,
|
102 |
+
|
103 |
+
progress_callback=None,
|
104 |
+
progress_interval=5
|
105 |
):
|
106 |
if seed == -1:
|
107 |
random.seed(time.time())
|
|
|
131 |
image_guidance_scale=image_scale,
|
132 |
num_images_per_prompt=num_samples,
|
133 |
generator=generator,
|
134 |
+
|
135 |
+
progress_callback=progress_callback,
|
136 |
+
progress_interval=progress_interval,
|
137 |
).images
|
138 |
|
139 |
return images
|
ootd/pipelines_ootd/pipeline_ootd.py
CHANGED
@@ -167,6 +167,12 @@ class OotdPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMix
|
|
167 |
return_dict: bool = True,
|
168 |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
169 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
**kwargs,
|
171 |
):
|
172 |
r"""
|
@@ -362,83 +368,88 @@ class OotdPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMix
|
|
362 |
return_dict=False,
|
363 |
)
|
364 |
|
365 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
|
|
|
|
|
|
|
|
|
|
442 |
|
443 |
if not output_type == "latent":
|
444 |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
|
167 |
return_dict: bool = True,
|
168 |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
169 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
170 |
+
|
171 |
+
progress_callback: Optional[Callable[[int, int], None]] = None,
|
172 |
+
progress_interval=5,
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
**kwargs,
|
177 |
):
|
178 |
r"""
|
|
|
368 |
return_dict=False,
|
369 |
)
|
370 |
|
371 |
+
# with self.progress_bar(total=num_inference_steps) as progress_bar:
|
372 |
+
for i, t in enumerate(timesteps):
|
373 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
374 |
+
|
375 |
+
# concat latents, image_latents in the channel dimension
|
376 |
+
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
377 |
+
latent_vton_model_input = torch.cat([scaled_latent_model_input, vton_latents], dim=1)
|
378 |
+
# latent_vton_model_input = scaled_latent_model_input + vton_latents
|
379 |
+
|
380 |
+
spatial_attn_inputs = spatial_attn_outputs.copy()
|
381 |
+
|
382 |
+
# predict the noise residual
|
383 |
+
noise_pred = self.unet_vton(
|
384 |
+
latent_vton_model_input,
|
385 |
+
spatial_attn_inputs,
|
386 |
+
t,
|
387 |
+
encoder_hidden_states=prompt_embeds,
|
388 |
+
return_dict=False,
|
389 |
+
)[0]
|
390 |
+
|
391 |
+
# Hack:
|
392 |
+
# For karras style schedulers the model does classifer free guidance using the
|
393 |
+
# predicted_original_sample instead of the noise_pred. So we need to compute the
|
394 |
+
# predicted_original_sample here if we are using a karras style scheduler.
|
395 |
+
if scheduler_is_in_sigma_space:
|
396 |
+
step_index = (self.scheduler.timesteps == t).nonzero()[0].item()
|
397 |
+
sigma = self.scheduler.sigmas[step_index]
|
398 |
+
noise_pred = latent_model_input - sigma * noise_pred
|
399 |
+
|
400 |
+
# perform guidance
|
401 |
+
if self.do_classifier_free_guidance:
|
402 |
+
noise_pred_text_image, noise_pred_text = noise_pred.chunk(2)
|
403 |
+
noise_pred = (
|
404 |
+
noise_pred_text
|
405 |
+
+ self.image_guidance_scale * (noise_pred_text_image - noise_pred_text)
|
406 |
+
)
|
407 |
+
|
408 |
+
# Hack:
|
409 |
+
# For karras style schedulers the model does classifer free guidance using the
|
410 |
+
# predicted_original_sample instead of the noise_pred. But the scheduler.step function
|
411 |
+
# expects the noise_pred and computes the predicted_original_sample internally. So we
|
412 |
+
# need to overwrite the noise_pred here such that the value of the computed
|
413 |
+
# predicted_original_sample is correct.
|
414 |
+
if scheduler_is_in_sigma_space:
|
415 |
+
noise_pred = (noise_pred - latents) / (-sigma)
|
416 |
+
|
417 |
+
# compute the previous noisy sample x_t -> x_t-1
|
418 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
419 |
+
|
420 |
+
init_latents_proper = image_ori_latents * self.vae.config.scaling_factor
|
421 |
+
|
422 |
+
# repainting
|
423 |
+
if i < len(timesteps) - 1:
|
424 |
+
noise_timestep = timesteps[i + 1]
|
425 |
+
init_latents_proper = self.scheduler.add_noise(
|
426 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
427 |
+
)
|
428 |
+
|
429 |
+
latents = (1 - mask_latents) * init_latents_proper + mask_latents * latents
|
430 |
+
|
431 |
+
if callback_on_step_end is not None:
|
432 |
+
callback_kwargs = {}
|
433 |
+
for k in callback_on_step_end_tensor_inputs:
|
434 |
+
callback_kwargs[k] = locals()[k]
|
435 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
436 |
+
|
437 |
+
latents = callback_outputs.pop("latents", latents)
|
438 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
439 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
440 |
+
vton_latents = callback_outputs.pop("vton_latents", vton_latents)
|
441 |
+
|
442 |
+
|
443 |
+
if progress_callback is not None and i % progress_interval == 0:
|
444 |
+
progress_callback(i, num_inference_steps)
|
445 |
+
|
446 |
+
|
447 |
+
# call the callback, if provided
|
448 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
449 |
+
# progress_bar.update()
|
450 |
+
if callback is not None and i % callback_steps == 0:
|
451 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
452 |
+
callback(step_idx, t, latents)
|
453 |
|
454 |
if not output_type == "latent":
|
455 |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
preprocess/humanparsing/parsing_api.py
CHANGED
@@ -16,6 +16,66 @@ from tqdm import tqdm
|
|
16 |
from PIL import Image
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def get_palette(num_cls):
|
20 |
""" Returns the color map for visualizing the segmentation mask.
|
21 |
Args:
|
@@ -182,6 +242,16 @@ def onnx_inference(session, lip_session, input_dir):
|
|
182 |
output_img.putpalette(palette)
|
183 |
face_mask = torch.from_numpy((parsing_result == 11).astype(np.float32))
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
return output_img, face_mask
|
186 |
|
187 |
|
|
|
16 |
from PIL import Image
|
17 |
|
18 |
|
19 |
+
def colorize_parsing(parsing_result):
|
20 |
+
label_map = {
|
21 |
+
0: "background", 1: "hat", 2: "hair", 3: "sunglasses", 4: "upper_clothes",
|
22 |
+
5: "skirt", 6: "pants", 7: "dress", 8: "belt", 9: "left_shoe",
|
23 |
+
10: "right_shoe", 11: "head", 12: "left_leg", 13: "right_leg",
|
24 |
+
14: "left_arm", 15: "right_arm", 16: "bag", 17: "scarf"
|
25 |
+
}
|
26 |
+
|
27 |
+
# Define colors for each part (RGB)
|
28 |
+
color_map = {
|
29 |
+
0: (0, 0, 0), # Background
|
30 |
+
1: (128, 0, 0), # Hat
|
31 |
+
2: (255, 0, 0), # Hair
|
32 |
+
3: (0, 255, 0), # Sunglasses
|
33 |
+
4: (0, 0, 255), # Upper-clothes
|
34 |
+
5: (255, 255, 0), # Skirt
|
35 |
+
6: (255, 0, 255), # Pants
|
36 |
+
7: (0, 255, 255), # Dress
|
37 |
+
8: (128, 128, 0), # Belt
|
38 |
+
9: (0, 128, 128), # Left-shoe
|
39 |
+
10: (128, 0, 128), # Right-shoe
|
40 |
+
11: (128, 128, 128),# Head
|
41 |
+
12: (64, 0, 0), # Left-leg
|
42 |
+
13: (192, 0, 0), # Right-leg
|
43 |
+
14: (64, 128, 0), # Left-arm
|
44 |
+
15: (192, 128, 0), # Right-arm
|
45 |
+
16: (64, 0, 128), # Bag
|
46 |
+
17: (192, 0, 128), # Scarf
|
47 |
+
}
|
48 |
+
|
49 |
+
height, width = parsing_result.shape
|
50 |
+
colored_parsing = np.zeros((height, width, 3), dtype=np.uint8)
|
51 |
+
|
52 |
+
for label, color in color_map.items():
|
53 |
+
colored_parsing[parsing_result == label] = color
|
54 |
+
|
55 |
+
return colored_parsing
|
56 |
+
|
57 |
+
def add_numbers_to_image(colored_parsing, parsing_result):
|
58 |
+
label_map = {
|
59 |
+
0: "background", 1: "hat", 2: "hair", 3: "sunglasses", 4: "upper_clothes",
|
60 |
+
5: "skirt", 6: "pants", 7: "dress", 8: "belt", 9: "left_shoe",
|
61 |
+
10: "right_shoe", 11: "head", 12: "left_leg", 13: "right_leg",
|
62 |
+
14: "left_arm", 15: "right_arm", 16: "bag", 17: "scarf"
|
63 |
+
}
|
64 |
+
|
65 |
+
height, width = parsing_result.shape
|
66 |
+
numbered_image = colored_parsing.copy()
|
67 |
+
|
68 |
+
for label in range(18): # 0 to 17
|
69 |
+
mask = (parsing_result == label)
|
70 |
+
if np.any(mask):
|
71 |
+
y, x = np.where(mask)
|
72 |
+
center_y, center_x = int(np.mean(y)), int(np.mean(x))
|
73 |
+
|
74 |
+
cv2.putText(numbered_image, str(label), (center_x, center_y),
|
75 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
|
76 |
+
|
77 |
+
return numbered_image
|
78 |
+
|
79 |
def get_palette(num_cls):
|
80 |
""" Returns the color map for visualizing the segmentation mask.
|
81 |
Args:
|
|
|
242 |
output_img.putpalette(palette)
|
243 |
face_mask = torch.from_numpy((parsing_result == 11).astype(np.float32))
|
244 |
|
245 |
+
# Colorize the parsing result
|
246 |
+
colored_parsing = colorize_parsing(parsing_result)
|
247 |
+
|
248 |
+
# Add numbers to the colorized image
|
249 |
+
numbered_parsing = add_numbers_to_image(colored_parsing, parsing_result)
|
250 |
+
|
251 |
+
# Save the numbered parsing result
|
252 |
+
output_filename = "colored_parsing.png"
|
253 |
+
cv2.imwrite(output_filename, cv2.cvtColor(numbered_parsing, cv2.COLOR_RGB2BGR))
|
254 |
+
|
255 |
return output_img, face_mask
|
256 |
|
257 |
|
preprocess/openpose/run_openpose.py
CHANGED
@@ -80,8 +80,8 @@ class OpenPose:
|
|
80 |
# output_image = cv2.resize(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB), (768, 1024))
|
81 |
# cv2.imwrite('/home/aigc/ProjectVTON/OpenPose/keypoints/out_pose.jpg', output_image)
|
82 |
|
83 |
-
|
84 |
-
return keypoints, candidate, subset
|
85 |
|
86 |
|
87 |
if __name__ == '__main__':
|
|
|
80 |
# output_image = cv2.resize(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB), (768, 1024))
|
81 |
# cv2.imwrite('/home/aigc/ProjectVTON/OpenPose/keypoints/out_pose.jpg', output_image)
|
82 |
|
83 |
+
return keypoints
|
84 |
+
# return keypoints, candidate, subset
|
85 |
|
86 |
|
87 |
if __name__ == '__main__':
|
requirements.txt
CHANGED
@@ -16,4 +16,6 @@ config==0.5.1
|
|
16 |
einops==0.7.0
|
17 |
onnxruntime==1.16.2
|
18 |
basicsr
|
19 |
-
onnxruntime-gpu==1.18.0
|
|
|
|
|
|
16 |
einops==0.7.0
|
17 |
onnxruntime==1.16.2
|
18 |
basicsr
|
19 |
+
onnxruntime-gpu==1.18.0
|
20 |
+
Flask
|
21 |
+
Flask-Cors
|
run/cloths_db.py
CHANGED
@@ -62,8 +62,8 @@ cloths_map= {
|
|
62 |
modeL_db= {
|
63 |
'051962_0.jpg': "no-dress",
|
64 |
'052472_0.jpg': "dress",
|
65 |
-
'02783_00.jpg':
|
66 |
-
'09933_00.jpg':
|
67 |
'053228_0.jpg': "dress",
|
68 |
'051482_0.jpg': "no-dress",
|
69 |
'model_1.png': 0,
|
|
|
62 |
modeL_db= {
|
63 |
'051962_0.jpg': "no-dress",
|
64 |
'052472_0.jpg': "dress",
|
65 |
+
'02783_00.jpg': "dress",
|
66 |
+
'09933_00.jpg': "dress",
|
67 |
'053228_0.jpg': "dress",
|
68 |
'051482_0.jpg': "no-dress",
|
69 |
'model_1.png': 0,
|
run/gradio_ootd.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
from pathlib import Path
|
4 |
import sys
|
5 |
import torch
|
6 |
-
from PIL import Image, ImageOps
|
7 |
import numpy as np
|
8 |
from utils_ootd import get_mask_location
|
9 |
from cloths_db import cloths_map, modeL_db
|
@@ -20,11 +20,12 @@ from preprocess.openpose.annotator.openpose.util import draw_bodypose
|
|
20 |
# torch.set_default_dtype(torch.float16)
|
21 |
|
22 |
|
23 |
-
|
|
|
24 |
parsing_model_hd = Parsing(0)
|
25 |
ootd_model_hd = OOTDiffusionHD(0)
|
26 |
|
27 |
-
|
28 |
parsing_model_dc = Parsing(0)
|
29 |
ootd_model_dc = OOTDiffusionDC(0)
|
30 |
|
@@ -41,11 +42,21 @@ garment_hd = os.path.join(example_path, 'garment/03244_00.jpg')
|
|
41 |
model_dc = os.path.join(example_path, 'model/model_8.png')
|
42 |
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')
|
43 |
|
44 |
-
|
|
|
|
|
45 |
ootd_model_dc.pipe.to('cuda')
|
46 |
ootd_model_dc.image_encoder.to('cuda')
|
47 |
ootd_model_dc.text_encoder.to('cuda')
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def convert_to_image(image_array):
|
50 |
if isinstance(image_array, np.ndarray):
|
51 |
# Normalize the data to the range [0, 255]
|
@@ -69,14 +80,24 @@ def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
|
|
69 |
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
|
70 |
|
71 |
with torch.no_grad():
|
72 |
-
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
|
73 |
-
ootd_model_hd.pipe.to('cuda')
|
74 |
-
ootd_model_hd.image_encoder.to('cuda')
|
75 |
-
ootd_model_hd.text_encoder.to('cuda')
|
76 |
|
|
|
|
|
|
|
|
|
77 |
garm_img = Image.open(garm_img).resize((768, 1024))
|
78 |
vton_img = Image.open(vton_img).resize((768, 1024))
|
79 |
-
keypoints =
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
|
81 |
|
82 |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
@@ -94,123 +115,188 @@ def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
|
|
94 |
image_ori=vton_img,
|
95 |
num_samples=n_samples,
|
96 |
num_steps=n_steps,
|
97 |
-
image_scale=
|
98 |
-
seed=
|
99 |
)
|
100 |
|
101 |
return images
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
model_type = 'dc'
|
108 |
-
if category == 'Upper-body':
|
109 |
-
category = 0
|
110 |
-
elif category == 'Lower-body':
|
111 |
-
category = 1
|
112 |
-
else:
|
113 |
-
category =2
|
114 |
|
115 |
-
|
116 |
-
# openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
|
117 |
-
# ootd_model_dc.pipe.to('cuda')
|
118 |
-
# ootd_model_dc.image_encoder.to('cuda')
|
119 |
-
# ootd_model_dc.text_encoder.to('cuda')
|
120 |
-
|
121 |
-
garm_img = Image.open(garm_img).resize((768, 1024))
|
122 |
-
vton_img = Image.open(vton_img).resize((768, 1024))
|
123 |
-
keypoints ,candidate , subset = openpose_model_dc(vton_img.resize((384, 512)))
|
124 |
|
125 |
-
# print(len(keypoints["pose_keypoints_2d"]))
|
126 |
-
# print(keypoints["pose_keypoints_2d"])
|
127 |
|
128 |
-
|
|
|
129 |
|
|
|
130 |
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
-
# person_image = np.asarray(Image.open(vton_img).resize((768, 1024)))
|
135 |
|
136 |
-
# output = draw_bodypose(canvas=person_image,candidate=candidate, subset=subset )
|
137 |
-
# output_image = Image.fromarray(output)
|
138 |
-
# output_image.save('keypose.png')
|
139 |
|
|
|
|
|
140 |
|
|
|
|
|
141 |
|
142 |
-
left_point = keypoints["pose_keypoints_2d"][2]
|
143 |
-
right_point = keypoints["pose_keypoints_2d"][5]
|
144 |
|
145 |
-
neck_point = keypoints["pose_keypoints_2d"][1]
|
146 |
-
hip_point = keypoints["pose_keypoints_2d"][8]
|
147 |
|
|
|
|
|
|
|
|
|
|
|
148 |
|
|
|
149 |
|
150 |
-
print(f'left shoulder - {left_point}')
|
151 |
-
print(f'right shoulder - {right_point}')
|
152 |
-
|
153 |
-
# #find disctance using Euclidian distance
|
154 |
-
shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)
|
155 |
|
156 |
-
|
|
|
157 |
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
shoulder_width_cm = shoulder_width_pixels * conversion_factor
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
print(f'Conversion factor (pixels to cm): {conversion_factor}')
|
171 |
-
print(f'Shoulder width (in cm): {shoulder_width_cm}')
|
172 |
-
print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')
|
173 |
|
174 |
-
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
face_mask_image = convert_to_image(face_mask)
|
178 |
|
179 |
-
# Save the images
|
180 |
-
model_parse_image.save('model_parse_image.png')
|
181 |
-
face_mask_image.save('face_mask_image.png')
|
182 |
|
|
|
183 |
|
184 |
-
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
185 |
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
# final_mask_grat = convert_to_image(mask_gray)
|
190 |
-
# final_mask_grat.save("final_mask_grat.png")
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
masked_vton_img.save("masked_vton_img.png")
|
200 |
|
|
|
|
|
201 |
images = ootd_model_dc(
|
202 |
model_type=model_type,
|
203 |
category=category_dict[category],
|
204 |
image_garm=garm_img,
|
205 |
image_vton=masked_vton_img,
|
206 |
-
mask=
|
207 |
image_ori=vton_img,
|
208 |
num_samples=1,
|
209 |
num_steps=10,
|
210 |
image_scale= 2.0,
|
211 |
seed=-1,
|
212 |
)
|
213 |
-
|
214 |
return images
|
215 |
|
216 |
# is_upper = False
|
@@ -218,6 +304,8 @@ def process_dc(vton_img, garm_img, category):
|
|
218 |
|
219 |
block = gr.Blocks().queue()
|
220 |
with block:
|
|
|
|
|
221 |
with gr.Row():
|
222 |
gr.Markdown("# ")
|
223 |
|
@@ -258,6 +346,7 @@ with block:
|
|
258 |
os.path.join(example_path, 'model/051918_0.jpg'),
|
259 |
os.path.join(example_path, 'model/051962_0.jpg'),
|
260 |
os.path.join(example_path, 'model/049205_0.jpg'),
|
|
|
261 |
],
|
262 |
|
263 |
)
|
@@ -273,7 +362,7 @@ with block:
|
|
273 |
os.path.join(example_path, 'model/052472_0.jpg'),
|
274 |
os.path.join(example_path, 'model/053514_0.jpg'),
|
275 |
os.path.join(example_path, 'model/053228_0.jpg'),
|
276 |
-
os.path.join(example_path, 'model/
|
277 |
os.path.join(example_path, 'model/053700_0.jpg'),
|
278 |
],
|
279 |
|
@@ -348,9 +437,17 @@ with block:
|
|
348 |
os.path.join(garment_path, '053319_1.jpg'),
|
349 |
os.path.join(garment_path, '052234_1.jpg'),
|
350 |
])
|
351 |
-
with gr.Column():
|
352 |
-
result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
|
353 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
run_button_dc = gr.Button(value="Run")
|
355 |
# n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
|
356 |
# n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
|
@@ -359,10 +456,33 @@ with block:
|
|
359 |
# seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
|
360 |
|
361 |
# ips_dc = [vton_img_dc, garm_img_dc, category_dc]
|
|
|
362 |
|
363 |
|
364 |
ips_dc = [vton_img_dc, garm_img_dc ,category_dc]
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
|
368 |
block.launch(server_name="0.0.0.0", server_port=7860 )
|
|
|
3 |
from pathlib import Path
|
4 |
import sys
|
5 |
import torch
|
6 |
+
from PIL import Image, ImageOps , ImageDraw
|
7 |
import numpy as np
|
8 |
from utils_ootd import get_mask_location
|
9 |
from cloths_db import cloths_map, modeL_db
|
|
|
20 |
# torch.set_default_dtype(torch.float16)
|
21 |
|
22 |
|
23 |
+
openpose_model = OpenPose(0)
|
24 |
+
|
25 |
parsing_model_hd = Parsing(0)
|
26 |
ootd_model_hd = OOTDiffusionHD(0)
|
27 |
|
28 |
+
|
29 |
parsing_model_dc = Parsing(0)
|
30 |
ootd_model_dc = OOTDiffusionDC(0)
|
31 |
|
|
|
42 |
model_dc = os.path.join(example_path, 'model/model_8.png')
|
43 |
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')
|
44 |
|
45 |
+
openpose_model.preprocessor.body_estimation.model.to('cuda')
|
46 |
+
#model dc
|
47 |
+
|
48 |
ootd_model_dc.pipe.to('cuda')
|
49 |
ootd_model_dc.image_encoder.to('cuda')
|
50 |
ootd_model_dc.text_encoder.to('cuda')
|
51 |
|
52 |
+
|
53 |
+
#model hd
|
54 |
+
|
55 |
+
# ootd_model_hd.pipe.to('cuda')
|
56 |
+
# ootd_model_hd.image_encoder.to('cuda')
|
57 |
+
# ootd_model_hd.text_encoder.to('cuda')
|
58 |
+
|
59 |
+
|
60 |
def convert_to_image(image_array):
|
61 |
if isinstance(image_array, np.ndarray):
|
62 |
# Normalize the data to the range [0, 255]
|
|
|
80 |
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
|
81 |
|
82 |
with torch.no_grad():
|
83 |
+
# openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
|
84 |
+
# ootd_model_hd.pipe.to('cuda')
|
85 |
+
# ootd_model_hd.image_encoder.to('cuda')
|
86 |
+
# ootd_model_hd.text_encoder.to('cuda')
|
87 |
|
88 |
+
# garm_img = Image.open(garm_img).resize((768, 1024))
|
89 |
+
# vton_img = Image.open(vton_img).resize((768, 1024))
|
90 |
+
# keypoints = openpose_model(vton_img.resize((384, 512)))
|
91 |
+
|
92 |
garm_img = Image.open(garm_img).resize((768, 1024))
|
93 |
vton_img = Image.open(vton_img).resize((768, 1024))
|
94 |
+
keypoints ,candidate , subset = openpose_model(vton_img.resize((384, 512)))
|
95 |
+
|
96 |
+
print(len(keypoints["pose_keypoints_2d"]))
|
97 |
+
print(keypoints["pose_keypoints_2d"])
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
|
102 |
|
103 |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
|
|
115 |
image_ori=vton_img,
|
116 |
num_samples=n_samples,
|
117 |
num_steps=n_steps,
|
118 |
+
image_scale=2.0,
|
119 |
+
seed=42,
|
120 |
)
|
121 |
|
122 |
return images
|
123 |
|
124 |
+
def create_bw_mask(size):
|
125 |
+
width, height = size
|
126 |
+
mask = Image.new('L', (width, height))
|
127 |
+
draw = ImageDraw.Draw(mask)
|
128 |
+
draw.rectangle([0, 0, width, height // 2], fill=255) # top half white
|
129 |
+
draw.rectangle([0, height // 2, width, height], fill=0) # bottom half black
|
130 |
+
return mask
|
131 |
|
132 |
+
def create_mask(vton_img, garm_img, category):
|
133 |
+
|
134 |
+
model_type = 'dc'
|
135 |
+
if category == 'Upper-body':
|
136 |
+
category = 0
|
137 |
+
elif category == 'Lower-body':
|
138 |
+
category = 1
|
139 |
+
else:
|
140 |
+
category =2
|
141 |
+
|
142 |
+
with torch.no_grad():
|
143 |
+
# openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
|
144 |
+
# ootd_model_dc.pipe.to('cuda')
|
145 |
+
# ootd_model_dc.image_encoder.to('cuda')
|
146 |
+
# ootd_model_dc.text_encoder.to('cuda')
|
147 |
+
|
148 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
149 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
150 |
+
keypoints = openpose_model(vton_img.resize((384, 512)))
|
151 |
|
152 |
+
print(len(keypoints["pose_keypoints_2d"]))
|
153 |
+
print(keypoints["pose_keypoints_2d"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
# person_image = np.asarray(vton_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
157 |
|
158 |
+
# print(len(person_image))
|
159 |
+
|
160 |
|
161 |
+
# person_image = np.asarray(Image.open(vton_img).resize((768, 1024)))
|
162 |
|
163 |
+
# output = draw_bodypose(canvas=person_image,candidate=candidate, subset=subset )
|
164 |
+
# output_image = Image.fromarray(output)
|
165 |
+
# output_image.save('keypose.png')
|
166 |
|
|
|
167 |
|
|
|
|
|
|
|
168 |
|
169 |
+
left_point = keypoints["pose_keypoints_2d"][2]
|
170 |
+
right_point = keypoints["pose_keypoints_2d"][5]
|
171 |
|
172 |
+
neck_point = keypoints["pose_keypoints_2d"][1]
|
173 |
+
hip_point = keypoints["pose_keypoints_2d"][8]
|
174 |
|
|
|
|
|
175 |
|
|
|
|
|
176 |
|
177 |
+
print(f'left shoulder - {left_point}')
|
178 |
+
print(f'right shoulder - {right_point}')
|
179 |
+
|
180 |
+
# #find disctance using Euclidian distance
|
181 |
+
shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)
|
182 |
|
183 |
+
height_pixels = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2
|
184 |
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
# # Assuming an average human height
|
187 |
+
average_height_cm = 172.72 *1.5
|
188 |
|
189 |
+
# Conversion factor from pixels to cm
|
190 |
+
conversion_factor = average_height_cm / height_pixels
|
191 |
|
192 |
+
# Convert shoulder width to real-world units
|
193 |
+
shoulder_width_cm = shoulder_width_pixels * conversion_factor
|
194 |
|
195 |
+
print(f'Shoulder width (in pixels): {shoulder_width_pixels}')
|
196 |
+
print(f'Estimated height (in pixels): {height_pixels}')
|
197 |
+
print(f'Conversion factor (pixels to cm): {conversion_factor}')
|
198 |
+
print(f'Shoulder width (in cm): {shoulder_width_cm}')
|
199 |
+
print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')
|
200 |
|
201 |
+
model_parse, face_mask = parsing_model_dc(vton_img.resize((384, 512)))
|
|
|
202 |
|
203 |
+
model_parse_image = convert_to_image(model_parse)
|
204 |
+
face_mask_image = convert_to_image(face_mask)
|
|
|
|
|
|
|
205 |
|
206 |
+
# Save the images
|
207 |
+
model_parse_image.save('model_parse_image.png')
|
208 |
+
face_mask_image.save('face_mask_image.png')
|
209 |
|
210 |
+
|
|
|
211 |
|
|
|
|
|
|
|
212 |
|
213 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
214 |
|
|
|
215 |
|
216 |
+
# up_mask, up_mask_gray = get_mask_location(model_type, category_dict_utils[0], model_parse, keypoints)
|
217 |
+
# lo_mask, lo_mask_gray = get_mask_location(model_type, category_dict_utils[1], model_parse, keypoints)
|
218 |
|
|
|
|
|
219 |
|
220 |
+
# mask = Image.composite(up_mask,lo_mask,up_mask)
|
221 |
+
# mask_gray = Image.composite(up_mask_gray, lo_mask_gray,up_mask)
|
222 |
+
|
223 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
224 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
225 |
+
|
226 |
+
# if modeL_db[vton_img] == 0:
|
227 |
+
# Create a black-and-white mask
|
228 |
+
bw_mask = create_bw_mask((768, 1024))
|
229 |
+
#crete empty black image with mode L
|
230 |
+
temp_img = Image.new("L", (768, 1024), 0)
|
231 |
+
mask = Image.composite(mask, temp_img, bw_mask)
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
# print(mask)
|
238 |
+
# Save the resized masks
|
239 |
+
mask.save("mask_resized.png")
|
240 |
+
mask_gray.save("mask_gray_resized.png")
|
241 |
+
|
242 |
+
return [mask, mask_gray], mask, mask_gray
|
243 |
+
# @spaces.GPU
|
244 |
+
def process_dc(vton_img, garm_img, category, mask,mask_gray):
|
245 |
+
model_type = 'dc'
|
246 |
+
if category == 'Upper-body':
|
247 |
+
category = 0
|
248 |
+
elif category == 'Lower-body':
|
249 |
+
category = 1
|
250 |
+
else:
|
251 |
+
category =2
|
252 |
+
|
253 |
+
# Extract the composite images from the edit data
|
254 |
+
edited_mask = mask['composite']
|
255 |
+
edited_mask_gray = mask_gray['composite']
|
256 |
+
# print(edited_mask)
|
257 |
+
|
258 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
259 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
# print(f'vton_img is {vton_img}')
|
266 |
+
with torch.no_grad():
|
267 |
+
# Ensure both masks are in 'L' mode (grayscale)
|
268 |
+
if edited_mask.mode != 'L':
|
269 |
+
edited_mask = edited_mask.convert('L')
|
270 |
+
if edited_mask_gray.mode != 'L':
|
271 |
+
edited_mask_gray = edited_mask_gray.convert('L')
|
272 |
+
|
273 |
|
274 |
+
# Ensure all images and masks are the same size
|
275 |
+
edited_mask = edited_mask.resize((768, 1024), Image.NEAREST)
|
276 |
+
edited_mask_gray = edited_mask_gray.resize((768, 1024), Image.NEAREST)
|
277 |
+
|
278 |
+
print(f'mask: {edited_mask}')
|
279 |
+
print(f'vton_img: {vton_img}')
|
280 |
+
|
281 |
+
|
282 |
+
masked_vton_img = Image.composite(edited_mask_gray, vton_img, edited_mask)
|
283 |
masked_vton_img.save("masked_vton_img.png")
|
284 |
|
285 |
+
print(f'category is {category}')
|
286 |
+
|
287 |
images = ootd_model_dc(
|
288 |
model_type=model_type,
|
289 |
category=category_dict[category],
|
290 |
image_garm=garm_img,
|
291 |
image_vton=masked_vton_img,
|
292 |
+
mask=edited_mask,
|
293 |
image_ori=vton_img,
|
294 |
num_samples=1,
|
295 |
num_steps=10,
|
296 |
image_scale= 2.0,
|
297 |
seed=-1,
|
298 |
)
|
299 |
+
# return None
|
300 |
return images
|
301 |
|
302 |
# is_upper = False
|
|
|
304 |
|
305 |
block = gr.Blocks().queue()
|
306 |
with block:
|
307 |
+
mask_state = gr.State()
|
308 |
+
mask_gray_state = gr.State()
|
309 |
with gr.Row():
|
310 |
gr.Markdown("# ")
|
311 |
|
|
|
346 |
os.path.join(example_path, 'model/051918_0.jpg'),
|
347 |
os.path.join(example_path, 'model/051962_0.jpg'),
|
348 |
os.path.join(example_path, 'model/049205_0.jpg'),
|
349 |
+
os.path.join(example_path, 'model/05997_00.jpg'),
|
350 |
],
|
351 |
|
352 |
)
|
|
|
362 |
os.path.join(example_path, 'model/052472_0.jpg'),
|
363 |
os.path.join(example_path, 'model/053514_0.jpg'),
|
364 |
os.path.join(example_path, 'model/053228_0.jpg'),
|
365 |
+
os.path.join(example_path, 'model/06802_00.jpg'),
|
366 |
os.path.join(example_path, 'model/053700_0.jpg'),
|
367 |
],
|
368 |
|
|
|
437 |
os.path.join(garment_path, '053319_1.jpg'),
|
438 |
os.path.join(garment_path, '052234_1.jpg'),
|
439 |
])
|
|
|
|
|
440 |
with gr.Column():
|
441 |
+
mask_gallery = gr.Gallery(label="Created Masks")
|
442 |
+
|
443 |
+
result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
|
444 |
+
with gr.Row():
|
445 |
+
# Add ImageEditor for mask editing
|
446 |
+
mask_editor = gr.ImageEditor(label="Edit Mask", type="pil")
|
447 |
+
# Add ImageEditor for mask_gray editing
|
448 |
+
mask_gray_editor = gr.ImageEditor(label="Edit Mask Gray", type="pil")
|
449 |
+
with gr.Column():
|
450 |
+
create_mask_button = gr.Button(value="Create Mask")
|
451 |
run_button_dc = gr.Button(value="Run")
|
452 |
# n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
|
453 |
# n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
|
|
|
456 |
# seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
|
457 |
|
458 |
# ips_dc = [vton_img_dc, garm_img_dc, category_dc]
|
459 |
+
|
460 |
|
461 |
|
462 |
ips_dc = [vton_img_dc, garm_img_dc ,category_dc]
|
463 |
+
|
464 |
+
# create_mask_button.click(
|
465 |
+
# fn=create_mask,
|
466 |
+
# inputs=ips_dc,
|
467 |
+
# outputs=[mask_gallery, mask_state, mask_gray_state]
|
468 |
+
# )
|
469 |
+
create_mask_button.click(
|
470 |
+
fn=create_mask,
|
471 |
+
inputs=ips_dc,
|
472 |
+
outputs=[mask_gallery, mask_editor, mask_gray_editor]
|
473 |
+
)
|
474 |
+
|
475 |
+
# run_button_dc.click(fn=process_dc, inputs=ips_dc, outputs=[result_gallery_dc])
|
476 |
+
# run_button_dc.click(
|
477 |
+
# fn=process_dc,
|
478 |
+
# inputs=ips_dc + [mask_state, mask_gray_state],
|
479 |
+
# outputs=[result_gallery_dc])
|
480 |
+
run_button_dc.click(
|
481 |
+
fn=process_dc,
|
482 |
+
inputs=[vton_img_dc, garm_img_dc, category_dc, mask_editor, mask_gray_editor],
|
483 |
+
outputs=[result_gallery_dc]
|
484 |
+
)
|
485 |
+
|
486 |
|
487 |
|
488 |
block.launch(server_name="0.0.0.0", server_port=7860 )
|
run/testing.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
from PIL import Image, ImageOps
|
7 |
+
import numpy as np
|
8 |
+
from utils_ootd import get_mask_location
|
9 |
+
from cloths_db import cloths_map, modeL_db
|
10 |
+
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
|
11 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
12 |
+
|
13 |
+
from preprocess.openpose.run_openpose import OpenPose
|
14 |
+
from preprocess.humanparsing.run_parsing import Parsing
|
15 |
+
from ootd.inference_ootd_hd import OOTDiffusionHD
|
16 |
+
from ootd.inference_ootd_dc import OOTDiffusionDC
|
17 |
+
from preprocess.openpose.annotator.openpose.util import draw_bodypose
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
openpose_model = OpenPose(0)
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
parsing_model_dc = Parsing(0)
|
26 |
+
ootd_model_dc = OOTDiffusionDC(0)
|
27 |
+
|
28 |
+
category_dict = ['upperbody', 'lowerbody', 'dress']
|
29 |
+
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
|
30 |
+
|
31 |
+
|
32 |
+
example_path = os.path.join(os.path.dirname(__file__), 'examples')
|
33 |
+
garment_path = os.path.join(os.path.dirname(__file__), 'examples','garment')
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
openpose_model.preprocessor.body_estimation.model.to('cuda')
|
39 |
+
|
40 |
+
|
41 |
+
ootd_model_dc.pipe.to('cuda')
|
42 |
+
ootd_model_dc.image_encoder.to('cuda')
|
43 |
+
ootd_model_dc.text_encoder.to('cuda')
|
44 |
+
|
45 |
+
def process_dc(vton_img, garm_img, category):
|
46 |
+
model_type = 'dc'
|
47 |
+
if category == 'Upper-body':
|
48 |
+
category = 0
|
49 |
+
elif category == 'Lower-body':
|
50 |
+
category = 1
|
51 |
+
else:
|
52 |
+
category =2
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
# openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
|
56 |
+
# ootd_model_dc.pipe.to('cuda')
|
57 |
+
# ootd_model_dc.image_encoder.to('cuda')
|
58 |
+
# ootd_model_dc.text_encoder.to('cuda')
|
59 |
+
|
60 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
61 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
62 |
+
keypoints = openpose_model(vton_img.resize((384, 512)))
|
63 |
+
|
64 |
+
print(len(keypoints["pose_keypoints_2d"]))
|
65 |
+
print(keypoints["pose_keypoints_2d"])
|
66 |
+
|
67 |
+
# person_image = np.asarray(vton_img)
|
68 |
+
|
69 |
+
|
70 |
+
# print(len(person_image))
|
71 |
+
|
72 |
+
|
73 |
+
# person_image = np.asarray(Image.open(vton_img).resize((768, 1024)))
|
74 |
+
|
75 |
+
# output = draw_bodypose(canvas=person_image,candidate=candidate, subset=subset )
|
76 |
+
# output_image = Image.fromarray(output)
|
77 |
+
# output_image.save('keypose.png')
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
left_point = keypoints["pose_keypoints_2d"][2]
|
82 |
+
right_point = keypoints["pose_keypoints_2d"][5]
|
83 |
+
|
84 |
+
neck_point = keypoints["pose_keypoints_2d"][1]
|
85 |
+
hip_point = keypoints["pose_keypoints_2d"][8]
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
print(f'left shoulder - {left_point}')
|
90 |
+
print(f'right shoulder - {right_point}')
|
91 |
+
|
92 |
+
# #find disctance using Euclidian distance
|
93 |
+
shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)
|
94 |
+
|
95 |
+
height_pixels = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2
|
96 |
+
|
97 |
+
|
98 |
+
# # Assuming an average human height
|
99 |
+
average_height_cm = 172.72 *1.5
|
100 |
+
|
101 |
+
# Conversion factor from pixels to cm
|
102 |
+
conversion_factor = average_height_cm / height_pixels
|
103 |
+
|
104 |
+
# Convert shoulder width to real-world units
|
105 |
+
shoulder_width_cm = shoulder_width_pixels * conversion_factor
|
106 |
+
|
107 |
+
print(f'Shoulder width (in pixels): {shoulder_width_pixels}')
|
108 |
+
print(f'Estimated height (in pixels): {height_pixels}')
|
109 |
+
print(f'Conversion factor (pixels to cm): {conversion_factor}')
|
110 |
+
print(f'Shoulder width (in cm): {shoulder_width_cm}')
|
111 |
+
print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')
|
112 |
+
|
113 |
+
model_parse, face_mask = parsing_model_dc(vton_img.resize((384, 512)))
|
114 |
+
|
115 |
+
# model_parse_image = convert_to_image(model_parse)
|
116 |
+
# face_mask_image = convert_to_image(face_mask)
|
117 |
+
|
118 |
+
# Save the images
|
119 |
+
# model_parse_image.save('model_parse_image.png')
|
120 |
+
# face_mask_image.save('face_mask_image.png')
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
126 |
+
|
127 |
+
|
128 |
+
# up_mask, up_mask_gray = get_mask_location(model_type, category_dict_utils[0], model_parse, keypoints)
|
129 |
+
# lo_mask, lo_mask_gray = get_mask_location(model_type, category_dict_utils[1], model_parse, keypoints)
|
130 |
+
|
131 |
+
|
132 |
+
# mask = Image.composite(up_mask,lo_mask,up_mask)
|
133 |
+
# mask_gray = Image.composite(up_mask_gray, lo_mask_gray,up_mask)
|
134 |
+
|
135 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
136 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
137 |
+
# Save the resized masks
|
138 |
+
mask.save("mask_resized.png")
|
139 |
+
mask_gray.save("mask_gray_resized.png")
|
140 |
+
|
141 |
+
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
|
142 |
+
masked_vton_img.save("masked_vton_img.png")
|
143 |
+
|
144 |
+
print(f'category is {category}')
|
145 |
+
|
146 |
+
# images = ootd_model_dc(
|
147 |
+
# model_type=model_type,
|
148 |
+
# category=category_dict[category],
|
149 |
+
# image_garm=garm_img,
|
150 |
+
# image_vton=masked_vton_img,
|
151 |
+
# mask=mask,
|
152 |
+
# image_ori=vton_img,
|
153 |
+
# num_samples=1,
|
154 |
+
# num_steps=10,
|
155 |
+
# image_scale= 2.0,
|
156 |
+
# seed=-1,
|
157 |
+
# )
|
158 |
+
# return None
|
159 |
+
return None
|
160 |
+
|
161 |
+
|
162 |
+
if __name__ == '__main__':
|
163 |
+
model_dc = os.path.join(example_path, 'model/model_8.png')
|
164 |
+
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')
|
165 |
+
|
166 |
+
|
167 |
+
print(process_dc(model_dc,garment_dc,0))
|
run/utils_ootd.py
CHANGED
@@ -57,6 +57,8 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
57 |
im_parse = model_parse.resize((width, height), Image.NEAREST)
|
58 |
parse_array = np.array(im_parse)
|
59 |
|
|
|
|
|
60 |
if model_type == 'hd':
|
61 |
arm_width = 60
|
62 |
elif model_type == 'dc':
|
@@ -81,9 +83,12 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
81 |
arms = arms_left + arms_right
|
82 |
|
83 |
if category == 'dresses':
|
|
|
|
|
|
|
84 |
parse_mask = (parse_array == 7).astype(np.float32) + \
|
85 |
(parse_array == 4).astype(np.float32) + \
|
86 |
-
(parse_array == 5).astype(np.float32)
|
87 |
(parse_array == 6).astype(np.float32)
|
88 |
|
89 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
|
57 |
im_parse = model_parse.resize((width, height), Image.NEAREST)
|
58 |
parse_array = np.array(im_parse)
|
59 |
|
60 |
+
# print(parse_array.shape)
|
61 |
+
|
62 |
if model_type == 'hd':
|
63 |
arm_width = 60
|
64 |
elif model_type == 'dc':
|
|
|
83 |
arms = arms_left + arms_right
|
84 |
|
85 |
if category == 'dresses':
|
86 |
+
# parse_mask = (parse_array == 5).astype(np.float32) # + \
|
87 |
+
# #(parse_array == 6).astype(np.float32)
|
88 |
+
|
89 |
parse_mask = (parse_array == 7).astype(np.float32) + \
|
90 |
(parse_array == 4).astype(np.float32) + \
|
91 |
+
(parse_array == 5).astype(np.float32) + \
|
92 |
(parse_array == 6).astype(np.float32)
|
93 |
|
94 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|