testing-app / app.py
muhammadshaheryar's picture
Create app.py
fc46bcd verified
raw
history blame
3.49 kB
import numpy as np
import matplotlib.pyplot as plt
import streamlit as st
# Define the calculation function
def calculate_relay_curve(tr_kva, tr_volt, ct_pr, ct_sec, fac, tms, i_f_fac, curve):
# Calculate transformer current
tr_curr = round(tr_kva / (tr_volt * np.sqrt(3)), 3)
pick = round(fac * tr_curr / ct_pr, 3) # Pickup value in multiples of In
i_f = round(i_f_fac * tr_curr * fac, 3) # Fault current in amps
# Select curve coefficients based on relay type
if curve == 'IEC Normal Inverse':
b_ = 0.14
a_ = 0.02
elif curve == 'IEC Very Inverse':
b_ = 13.5
a_ = 1
elif curve == 'IEC Extremely Inverse':
b_ = 80
a_ = 2.0
elif curve == 'IEC Long Time Inverse':
b_ = 120
a_ = 1.0
else:
st.error("Invalid Curve Selected.")
return
# Calculate fault trip time
try:
fault_time = b_ * tms / (((i_f * (ct_sec / ct_pr) / (pick * ct_sec)) ** a_) - 1)
except ZeroDivisionError:
st.error("Error: Division by zero in fault trip time calculation. Check input values.")
return
# Generate data for the relay curve (current vs time)
x_curr = np.linspace(pick * ct_pr * 1.1, pick * ct_pr * 5, 500)
y_time = []
for x in x_curr:
try:
time = b_ * tms / (((x * (ct_sec / ct_pr) / (pick * ct_sec)) ** a_) - 1)
y_time.append(time if time > 0 else np.nan) # Avoid negative/undefined times
except ZeroDivisionError:
y_time.append(np.nan)
# Display results
st.write('### Results:')
st.write(f'**Rated Current:** {tr_curr} A')
st.write(f'**Pickup:** {pick} x In')
st.write(f'**Fault Current:** {i_f} A')
st.write(f'**Trip Time:** {round(fault_time, 3)} sec')
# Plot the relay curve
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(x_curr, y_time, label="Relay Curve", color='blue')
# Mark the fault current and trip time on the graph
ax.axvline(x=i_f, color='red', linestyle='--', label=f"Fault Current: {i_f} A")
ax.axhline(y=fault_time, color='green', linestyle='--', label=f"Trip Time: {round(fault_time, 3)} sec")
# Adding labels and title
ax.set_xlabel('Current (Amp)')
ax.set_ylabel('Time (sec)')
ax.set_title(f"Relay Curve: {curve}")
# Adding a legend
ax.legend()
# Show the plot
st.pyplot(fig)
# Streamlit app layout
st.title("Relay Curve Calculator")
st.sidebar.header("Input Parameters")
# Input fields
tr_kva = st.sidebar.number_input("Transformer Rating (kVA)", min_value=1.0, value=1000.0, step=1.0)
tr_volt = st.sidebar.number_input("Transformer Voltage (V)", min_value=1.0, value=11000.0, step=1.0)
ct_pr = st.sidebar.number_input("CT Primary (Amp)", min_value=1.0, value=200.0, step=1.0)
ct_sec = st.sidebar.number_input("CT Secondary (Amp)", min_value=1.0, value=5.0, step=1.0)
fac = st.sidebar.number_input("Fault Anticipation Factor", min_value=1.0, value=1.2, step=0.1)
tms = st.sidebar.number_input("Time Multiplier Setting (TMS)", min_value=0.01, value=0.1, step=0.01)
i_f_fac = st.sidebar.number_input("Fault Current Multiplier", min_value=1.0, value=10.0, step=0.1)
curve = st.sidebar.selectbox("Relay Curve Type", ['IEC Normal Inverse', 'IEC Very Inverse', 'IEC Extremely Inverse', 'IEC Long Time Inverse'])
# Run the calculation when the button is clicked
if st.sidebar.button("Calculate"):
calculate_relay_curve(tr_kva, tr_volt, ct_pr, ct_sec, fac, tms, i_f_fac, curve)