Spaces:
Runtime error
Runtime error
from pathlib import Path | |
from torchvision.utils import save_image | |
import pandas as pd | |
import torch | |
import torch.nn.functional as F | |
from medical_diffusion.data.datasets import CheXpert_Dataset, CheXpert_2_Dataset | |
import math | |
path_out = Path().cwd()/'results'/'test'/'CheXpert_2' | |
path_out.mkdir(parents=True, exist_ok=True) | |
path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/preprocessed_tianyu') | |
labels = pd.read_csv(path_root/'labels/cheXPert_label.csv', index_col='Path') | |
# Get patients | |
# labels['patient'] = labels.index.str.split('/').str[2] | |
# labels.set_index('patient',drop=True, append=True, inplace=True) | |
# for c in labels.columns: | |
# print(labels[c].value_counts(dropna=False)) | |
ds = CheXpert_2_Dataset( | |
path_root=path_root, | |
) | |
weights = ds.get_weights() | |
x = torch.stack([ds[n]['source'] for n in range(4)]) | |
b = x.shape[0] | |
save_image(x, path_out/'samples_down_0.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True ) | |
size_0 = torch.tensor(x.shape[2:]) | |
for i in range(3): | |
new_size = torch.div(size_0, 2**(i+1), rounding_mode='floor' ) | |
x_i = F.interpolate(x, size=tuple(new_size), mode='nearest', align_corners=None) | |
print(x_i.shape) | |
save_image(x_i, path_out/f'samples_down_{i+1}.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True) |