mudassir032 commited on
Commit
0d96d2e
·
verified ·
1 Parent(s): 216eaf2

Upload 4 files

Browse files
.gitattributes CHANGED
@@ -38,3 +38,4 @@ Blood[[:space:]]Cancer/blood_cancer.keras filter=lfs diff=lfs merge=lfs -text
38
  Blood[[:space:]]Cancer/test_imgs/benign.jpg filter=lfs diff=lfs merge=lfs -text
39
  Brain[[:space:]]Tumor/brain_tumor.keras filter=lfs diff=lfs merge=lfs -text
40
  Skin[[:space:]]Cancer/skin_cancer.keras filter=lfs diff=lfs merge=lfs -text
 
 
38
  Blood[[:space:]]Cancer/test_imgs/benign.jpg filter=lfs diff=lfs merge=lfs -text
39
  Brain[[:space:]]Tumor/brain_tumor.keras filter=lfs diff=lfs merge=lfs -text
40
  Skin[[:space:]]Cancer/skin_cancer.keras filter=lfs diff=lfs merge=lfs -text
41
+ Brain[[:space:]]Tumor/brain_tumor_model.keras filter=lfs diff=lfs merge=lfs -text
Brain Tumor/Brain_tumor_classification_MRI.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Brain Tumor/brain-tumor.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import tensorflow as tf
4
+ import streamlit as st
5
+ from tensorflow.keras.models import load_model
6
+
7
+ st.subheader("Brain Tumor Detection CNN")
8
+ @st.cache_resource
9
+ def load_cached_models():
10
+ model = load_model("Brain Tumor/brain_tumor_model.keras")
11
+
12
+ return model
13
+
14
+ model= load_cached_models()
15
+ uploaded_file = st.file_uploader("Upload an X-ray image (JPEG/PNG)", type=["jpeg", "jpg", "png"])
16
+
17
+ if uploaded_file is not None:
18
+ file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
19
+ img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
20
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
21
+ img_resized = cv2.resize(img, (224, 224)).astype('float32') / 255.0
22
+ img_expanded = np.expand_dims(img_resized, axis=0)
23
+
24
+ pred = model.predict(img_expanded).flatten()
25
+
26
+ pred_id = np.argmax(pred)
27
+ final_pred = pred[pred_id]
28
+
29
+ st.image(img, caption="Uploaded X-ray", use_container_width=True)
30
+ st.subheader("Prediction")
31
+
32
+ st.progress(int(round(final_pred * 100)))
33
+ st.write(f"### Percentage: {int(round(final_pred * 100))}%")
34
+ st.write("#### Tumor Detected" if final_pred > 0.5 else "Your X-ray seems normal")
Brain Tumor/brain_tumor_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fb7086ddebef47f5b573a01995fd86c97da06429e07f79140a624dda3b8f777
3
+ size 75732883