|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import warnings |
|
|
|
warnings.filterwarnings("ignore") |
|
logging.getLogger("lightning").setLevel(logging.ERROR) |
|
logging.getLogger("trimesh").setLevel(logging.ERROR) |
|
|
|
import os |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision |
|
import trimesh |
|
from pytorch3d.ops import SubdivideMeshes |
|
from huggingface_hub import hf_hub_download |
|
from termcolor import colored |
|
from tqdm import tqdm |
|
|
|
from apps.IFGeo import IFGeo |
|
from apps.Normal import Normal |
|
from lib.common.BNI import BNI |
|
from lib.common.BNI_utils import save_normal_tensor |
|
from lib.common.config import cfg |
|
from lib.common.imutils import blend_rgb_norm |
|
from lib.common.local_affine import register |
|
from lib.common.render import query_color, Render |
|
from lib.common.train_util import Format, init_loss |
|
from lib.common.voxelize import VoxelGrid |
|
from lib.dataset.mesh_util import * |
|
from lib.dataset.TestDataset import TestDataset |
|
from lib.net.geometry import rot6d_to_rotmat, rotation_matrix_to_angle_axis |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
def generate_video(vis_tensor_path): |
|
|
|
in_tensor = torch.load(vis_tensor_path) |
|
|
|
render = Render(size=512, device=torch.device("cuda:0")) |
|
|
|
|
|
verts_lst = in_tensor["body_verts"] + in_tensor["BNI_verts"] |
|
faces_lst = in_tensor["body_faces"] + in_tensor["BNI_faces"] |
|
|
|
|
|
tmp_path = vis_tensor_path.replace("_in_tensor.pt", "_tmp.mp4") |
|
out_path = vis_tensor_path.replace("_in_tensor.pt", ".mp4") |
|
|
|
render.load_meshes(verts_lst, faces_lst) |
|
render.get_rendered_video_multi(in_tensor, tmp_path) |
|
|
|
os.system(f"ffmpeg -y -loglevel quiet -stats -i {tmp_path} -vcodec libx264 {out_path}") |
|
|
|
return out_path |
|
|
|
import sys |
|
class Logger: |
|
def __init__(self, filename): |
|
self.terminal = sys.stdout |
|
self.log = open(filename, "w") |
|
|
|
def write(self, message): |
|
self.terminal.write(message) |
|
self.log.write(message) |
|
|
|
def flush(self): |
|
self.terminal.flush() |
|
self.log.flush() |
|
|
|
def isatty(self): |
|
return False |
|
|
|
def generate_model(in_path, fitting_step=50): |
|
|
|
sys.stdout = Logger("./output.log") |
|
|
|
out_dir = "./results" |
|
|
|
|
|
cfg.merge_from_file("./configs/econ.yaml") |
|
cfg.merge_from_file("./lib/pymafx/configs/pymafx_config.yaml") |
|
device = torch.device(f"cuda:0") |
|
|
|
|
|
cfg_show_list = [ |
|
"test_gpus", [0], "mcube_res", 512, "clean_mesh", True, "test_mode", True, "batch_size", 1 |
|
] |
|
|
|
cfg.merge_from_list(cfg_show_list) |
|
cfg.freeze() |
|
|
|
|
|
normal_net = Normal.load_from_checkpoint( |
|
cfg=cfg, |
|
checkpoint_path=hf_hub_download( |
|
repo_id="Yuliang/ICON", use_auth_token=os.environ["ICON"], filename=cfg.normal_path |
|
), |
|
map_location=device, |
|
strict=False |
|
) |
|
normal_net = normal_net.to(device) |
|
normal_net.netG.eval() |
|
print( |
|
colored( |
|
f"Resume Normal Estimator from : {cfg.normal_path} ", "green" |
|
) |
|
) |
|
|
|
|
|
SMPLX_object = SMPLX() |
|
|
|
dataset_param = { |
|
"image_path": in_path, |
|
"use_seg": True, |
|
"hps_type": cfg.bni.hps_type, |
|
"vol_res": cfg.vol_res, |
|
"single": True, |
|
} |
|
|
|
if cfg.bni.use_ifnet: |
|
|
|
ifnet = IFGeo.load_from_checkpoint( |
|
cfg=cfg, |
|
checkpoint_path=hf_hub_download( |
|
repo_id="Yuliang/ICON", use_auth_token=os.environ["ICON"], filename=cfg.ifnet_path |
|
), |
|
map_location=device, |
|
strict=False |
|
) |
|
ifnet = ifnet.to(device) |
|
ifnet.netG.eval() |
|
|
|
print(colored(f"Resume IF-Net+ from : {cfg.ifnet_path} ", "green")) |
|
print(colored(f"Complete with : IF-Nets+ (Implicit) ", "green")) |
|
else: |
|
print(colored(f"Complete with : SMPL-X (Explicit) ", "green")) |
|
|
|
dataset = TestDataset(dataset_param, device) |
|
|
|
print(colored(f"Dataset Size: {len(dataset)}", "green")) |
|
|
|
data = dataset[0] |
|
|
|
losses = init_loss() |
|
|
|
print(f"Subject name: {data['name']}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
os.makedirs(osp.join(out_dir, cfg.name, "png"), exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
os.makedirs(osp.join(out_dir, cfg.name, "obj"), exist_ok=True) |
|
|
|
in_tensor = { |
|
"smpl_faces": data["smpl_faces"], "image": data["img_icon"].to(device), "mask": |
|
data["img_mask"].to(device) |
|
} |
|
|
|
|
|
optimed_pose = data["body_pose"].requires_grad_(True) |
|
optimed_trans = data["trans"].requires_grad_(True) |
|
optimed_betas = data["betas"].requires_grad_(True) |
|
optimed_orient = data["global_orient"].requires_grad_(True) |
|
|
|
optimizer_smpl = torch.optim.Adam([optimed_pose, optimed_trans, optimed_betas, optimed_orient], |
|
lr=1e-2, |
|
amsgrad=True) |
|
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau( |
|
optimizer_smpl, |
|
mode="min", |
|
factor=0.5, |
|
verbose=0, |
|
min_lr=1e-5, |
|
patience=5, |
|
) |
|
|
|
|
|
per_data_lst = [] |
|
|
|
N_body, N_pose = optimed_pose.shape[:2] |
|
|
|
smpl_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_00.obj" |
|
|
|
|
|
if osp.exists(smpl_path): |
|
|
|
smpl_verts_lst = [] |
|
smpl_faces_lst = [] |
|
|
|
for idx in range(N_body): |
|
|
|
smpl_obj = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj" |
|
smpl_mesh = trimesh.load(smpl_obj) |
|
smpl_verts = torch.tensor(smpl_mesh.vertices).to(device).float() |
|
smpl_faces = torch.tensor(smpl_mesh.faces).to(device).long() |
|
smpl_verts_lst.append(smpl_verts) |
|
smpl_faces_lst.append(smpl_faces) |
|
|
|
batch_smpl_verts = torch.stack(smpl_verts_lst) |
|
batch_smpl_faces = torch.stack(smpl_faces_lst) |
|
|
|
|
|
in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal( |
|
batch_smpl_verts, batch_smpl_faces |
|
) |
|
|
|
with torch.no_grad(): |
|
in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor) |
|
|
|
in_tensor["smpl_verts"] = batch_smpl_verts * torch.tensor([1., -1., 1.]).to(device) |
|
in_tensor["smpl_faces"] = batch_smpl_faces[:, :, [0, 2, 1]] |
|
|
|
else: |
|
|
|
loop_smpl = tqdm(range(fitting_step)) |
|
|
|
for i in loop_smpl: |
|
|
|
per_loop_lst = [] |
|
|
|
optimizer_smpl.zero_grad() |
|
|
|
N_body, N_pose = optimed_pose.shape[:2] |
|
|
|
|
|
optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(-1, 6)).view(N_body, 1, 3, 3) |
|
optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(-1, 6)).view(N_body, N_pose, 3, 3) |
|
|
|
smpl_verts, smpl_landmarks, smpl_joints = dataset.smpl_model( |
|
shape_params=optimed_betas, |
|
expression_params=tensor2variable(data["exp"], device), |
|
body_pose=optimed_pose_mat, |
|
global_pose=optimed_orient_mat, |
|
jaw_pose=tensor2variable(data["jaw_pose"], device), |
|
left_hand_pose=tensor2variable(data["left_hand_pose"], device), |
|
right_hand_pose=tensor2variable(data["right_hand_pose"], device), |
|
) |
|
|
|
smpl_verts = (smpl_verts + optimed_trans) * data["scale"] |
|
smpl_joints = (smpl_joints + optimed_trans) * data["scale"] * torch.tensor([ |
|
1.0, 1.0, -1.0 |
|
]).to(device) |
|
|
|
|
|
smpl_joints_3d = ( |
|
smpl_joints[:, dataset.smpl_data.smpl_joint_ids_45_pixie, :] + 1.0 |
|
) * 0.5 |
|
in_tensor["smpl_joint"] = smpl_joints[:, dataset.smpl_data.smpl_joint_ids_24_pixie, :] |
|
|
|
ghum_lmks = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], :2].to(device) |
|
ghum_conf = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], -1].to(device) |
|
smpl_lmks = smpl_joints_3d[:, SMPLX_object.ghum_smpl_pairs[:, 1], :2].to(device) |
|
|
|
|
|
|
|
in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal( |
|
smpl_verts * torch.tensor([1.0, -1.0, -1.0]).to(device), |
|
in_tensor["smpl_faces"], |
|
) |
|
|
|
T_mask_F, T_mask_B = dataset.render.get_image(type="mask") |
|
|
|
with torch.no_grad(): |
|
in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor) |
|
|
|
diff_F_smpl = torch.abs(in_tensor["T_normal_F"] - in_tensor["normal_F"]) |
|
diff_B_smpl = torch.abs(in_tensor["T_normal_B"] - in_tensor["normal_B"]) |
|
|
|
|
|
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1) |
|
gt_arr = in_tensor["mask"].repeat(1, 1, 2) |
|
diff_S = torch.abs(smpl_arr - gt_arr) |
|
losses["silhouette"]["value"] = diff_S.mean() |
|
|
|
|
|
|
|
cloth_overlap = diff_S.sum(dim=[1, 2]) / gt_arr.sum(dim=[1, 2]) |
|
cloth_overlap_flag = cloth_overlap > cfg.cloth_overlap_thres |
|
losses["joint"]["weight"] = [50.0 if flag else 5.0 for flag in cloth_overlap_flag] |
|
|
|
|
|
|
|
|
|
|
|
bg_value = in_tensor["T_normal_F"][0, 0, 0, 0].to(device) |
|
smpl_arr_fake = torch.cat([ |
|
in_tensor["T_normal_F"][:, 0].ne(bg_value).float(), |
|
in_tensor["T_normal_B"][:, 0].ne(bg_value).float() |
|
], |
|
dim=-1) |
|
|
|
body_overlap = (gt_arr * smpl_arr_fake.gt(0.0) |
|
).sum(dim=[1, 2]) / smpl_arr_fake.gt(0.0).sum(dim=[1, 2]) |
|
body_overlap_mask = (gt_arr * smpl_arr_fake).unsqueeze(1) |
|
body_overlap_flag = body_overlap < cfg.body_overlap_thres |
|
|
|
losses["normal"]["value"] = ( |
|
diff_F_smpl * body_overlap_mask[..., :512] + |
|
diff_B_smpl * body_overlap_mask[..., 512:] |
|
).mean() / 2.0 |
|
|
|
losses["silhouette"]["weight"] = [0 if flag else 1.0 for flag in body_overlap_flag] |
|
occluded_idx = torch.where(body_overlap_flag)[0] |
|
ghum_conf[occluded_idx] *= ghum_conf[occluded_idx] > 0.95 |
|
losses["joint"]["value"] = (torch.norm(ghum_lmks - smpl_lmks, dim=2) * |
|
ghum_conf).mean(dim=1) |
|
|
|
|
|
smpl_loss = 0.0 |
|
pbar_desc = "Body Fitting -- " |
|
for k in ["normal", "silhouette", "joint"]: |
|
per_loop_loss = (losses[k]["value"] * |
|
torch.tensor(losses[k]["weight"]).to(device)).mean() |
|
pbar_desc += f"{k}: {per_loop_loss:.3f} | " |
|
smpl_loss += per_loop_loss |
|
pbar_desc += f"Total: {smpl_loss:.3f}" |
|
loose_str = ''.join([str(j) for j in cloth_overlap_flag.int().tolist()]) |
|
occlude_str = ''.join([str(j) for j in body_overlap_flag.int().tolist()]) |
|
pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow") |
|
loop_smpl.set_description(pbar_desc) |
|
print(pbar_desc) |
|
|
|
|
|
if (i == fitting_step - 1): |
|
|
|
per_loop_lst.extend([ |
|
in_tensor["image"], |
|
in_tensor["T_normal_F"], |
|
in_tensor["normal_F"], |
|
diff_S[:, :, :512].unsqueeze(1).repeat(1, 3, 1, 1), |
|
]) |
|
per_loop_lst.extend([ |
|
in_tensor["image"], |
|
in_tensor["T_normal_B"], |
|
in_tensor["normal_B"], |
|
diff_S[:, :, 512:].unsqueeze(1).repeat(1, 3, 1, 1), |
|
]) |
|
per_data_lst.append( |
|
get_optim_grid_image(per_loop_lst, None, nrow=N_body * 2, type="smpl") |
|
) |
|
|
|
smpl_loss.backward() |
|
optimizer_smpl.step() |
|
scheduler_smpl.step(smpl_loss) |
|
|
|
in_tensor["smpl_verts"] = smpl_verts * torch.tensor([1.0, 1.0, -1.0]).to(device) |
|
in_tensor["smpl_faces"] = in_tensor["smpl_faces"][:, :, [0, 2, 1]] |
|
|
|
per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_smpl.png")) |
|
|
|
img_crop_path = osp.join(out_dir, cfg.name, "png", f"{data['name']}_crop.png") |
|
torchvision.utils.save_image( |
|
torch.cat([ |
|
data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5, |
|
(in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5 |
|
], |
|
dim=3), img_crop_path |
|
) |
|
|
|
rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data) |
|
rgb_norm_B = blend_rgb_norm(in_tensor["normal_B"], data) |
|
|
|
img_overlap_path = osp.join(out_dir, cfg.name, f"png/{data['name']}_overlap.png") |
|
torchvision.utils.save_image( |
|
torch.cat([data["img_raw"], rgb_norm_F, rgb_norm_B], dim=-1) / 255., img_overlap_path |
|
) |
|
|
|
smpl_obj_lst = [] |
|
|
|
for idx in range(N_body): |
|
|
|
smpl_obj = trimesh.Trimesh( |
|
in_tensor["smpl_verts"].detach().cpu()[idx] * torch.tensor([1.0, -1.0, 1.0]), |
|
in_tensor["smpl_faces"].detach().cpu()[0][:, [0, 2, 1]], |
|
process=False, |
|
maintains_order=True, |
|
) |
|
|
|
smpl_obj_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj" |
|
|
|
if not osp.exists(smpl_obj_path): |
|
smpl_obj.export(smpl_obj_path) |
|
smpl_obj.export(smpl_obj_path.replace(".obj", ".glb")) |
|
smpl_info = { |
|
"betas": |
|
optimed_betas[idx].detach().cpu().unsqueeze(0), |
|
"body_pose": |
|
rotation_matrix_to_angle_axis(optimed_pose_mat[idx].detach()).cpu().unsqueeze(0), |
|
"global_orient": |
|
rotation_matrix_to_angle_axis(optimed_orient_mat[idx].detach()).cpu().unsqueeze(0), |
|
"transl": |
|
optimed_trans[idx].detach().cpu(), |
|
"expression": |
|
data["exp"][idx].cpu().unsqueeze(0), |
|
"jaw_pose": |
|
rotation_matrix_to_angle_axis(data["jaw_pose"][idx]).cpu().unsqueeze(0), |
|
"left_hand_pose": |
|
rotation_matrix_to_angle_axis(data["left_hand_pose"][idx]).cpu().unsqueeze(0), |
|
"right_hand_pose": |
|
rotation_matrix_to_angle_axis(data["right_hand_pose"][idx]).cpu().unsqueeze(0), |
|
"scale": |
|
data["scale"][idx].cpu(), |
|
} |
|
np.save( |
|
smpl_obj_path.replace(".obj", ".npy"), |
|
smpl_info, |
|
allow_pickle=True, |
|
) |
|
smpl_obj_lst.append(smpl_obj) |
|
|
|
del optimizer_smpl |
|
del optimed_betas |
|
del optimed_orient |
|
del optimed_pose |
|
del optimed_trans |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
per_data_lst = [] |
|
|
|
batch_smpl_verts = in_tensor["smpl_verts"].detach() * torch.tensor([1.0, -1.0, 1.0], |
|
device=device) |
|
batch_smpl_faces = in_tensor["smpl_faces"].detach()[:, :, [0, 2, 1]] |
|
|
|
in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth( |
|
batch_smpl_verts, batch_smpl_faces |
|
) |
|
|
|
per_loop_lst = [] |
|
|
|
in_tensor["BNI_verts"] = [] |
|
in_tensor["BNI_faces"] = [] |
|
in_tensor["body_verts"] = [] |
|
in_tensor["body_faces"] = [] |
|
|
|
for idx in range(N_body): |
|
|
|
final_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_full.obj" |
|
|
|
side_mesh = smpl_obj_lst[idx].copy() |
|
face_mesh = smpl_obj_lst[idx].copy() |
|
hand_mesh = smpl_obj_lst[idx].copy() |
|
smplx_mesh = smpl_obj_lst[idx].copy() |
|
|
|
|
|
BNI_dict = save_normal_tensor( |
|
in_tensor, |
|
idx, |
|
osp.join(out_dir, cfg.name, f"BNI/{data['name']}_{idx}"), |
|
cfg.bni.thickness, |
|
) |
|
|
|
|
|
BNI_object = BNI( |
|
dir_path=osp.join(out_dir, cfg.name, "BNI"), |
|
name=data["name"], |
|
BNI_dict=BNI_dict, |
|
cfg=cfg.bni, |
|
device=device |
|
) |
|
|
|
BNI_object.extract_surface(False) |
|
|
|
in_tensor["body_verts"].append(torch.tensor(smpl_obj_lst[idx].vertices).float()) |
|
in_tensor["body_faces"].append(torch.tensor(smpl_obj_lst[idx].faces).long()) |
|
|
|
|
|
|
|
|
|
if cfg.bni.use_ifnet: |
|
|
|
side_mesh_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_IF.obj" |
|
|
|
side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask) |
|
|
|
|
|
in_tensor.update( |
|
dataset.depth_to_voxel({ |
|
"depth_F": BNI_object.F_depth.unsqueeze(0), "depth_B": |
|
BNI_object.B_depth.unsqueeze(0) |
|
}) |
|
) |
|
|
|
occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[ |
|
0, |
|
] * 3, scale=2.0).data.transpose(2, 1, 0) |
|
occupancies = np.flip(occupancies, axis=1) |
|
|
|
in_tensor["body_voxels"] = torch.tensor(occupancies.copy() |
|
).float().unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor) |
|
verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf) |
|
|
|
if ifnet.clean_mesh_flag: |
|
verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF) |
|
|
|
side_mesh = trimesh.Trimesh(verts_IF, faces_IF) |
|
side_mesh = remesh_laplacian(side_mesh, side_mesh_path) |
|
|
|
else: |
|
side_mesh = apply_vertex_mask( |
|
side_mesh, |
|
( |
|
SMPLX_object.front_flame_vertex_mask + SMPLX_object.smplx_mano_vertex_mask + |
|
SMPLX_object.eyeball_vertex_mask |
|
).eq(0).float(), |
|
) |
|
|
|
|
|
side_mesh = Meshes( |
|
verts=[torch.tensor(side_mesh.vertices).float()], |
|
faces=[torch.tensor(side_mesh.faces).long()], |
|
).to(device) |
|
sm = SubdivideMeshes(side_mesh) |
|
side_mesh = register(BNI_object.F_B_trimesh, sm(side_mesh), device) |
|
|
|
side_verts = torch.tensor(side_mesh.vertices).float().to(device) |
|
side_faces = torch.tensor(side_mesh.faces).long().to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj") |
|
full_lst = [] |
|
|
|
if "face" in cfg.bni.use_smpl: |
|
|
|
|
|
face_mesh = apply_vertex_mask(face_mesh, SMPLX_object.front_flame_vertex_mask) |
|
face_mesh.vertices = face_mesh.vertices - np.array([0, 0, cfg.bni.thickness]) |
|
|
|
|
|
BNI_object.F_B_trimesh = part_removal( |
|
BNI_object.F_B_trimesh, |
|
face_mesh, |
|
cfg.bni.face_thres, |
|
device, |
|
smplx_mesh, |
|
region="face" |
|
) |
|
side_mesh = part_removal( |
|
side_mesh, face_mesh, cfg.bni.face_thres, device, smplx_mesh, region="face" |
|
) |
|
face_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_face.obj") |
|
full_lst += [face_mesh] |
|
|
|
if "hand" in cfg.bni.use_smpl and (True in data['hands_visibility'][idx]): |
|
|
|
hand_mask = torch.zeros(SMPLX_object.smplx_verts.shape[0], ) |
|
if data['hands_visibility'][idx][0]: |
|
hand_mask.index_fill_( |
|
0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["left_hand"]), 1.0 |
|
) |
|
if data['hands_visibility'][idx][1]: |
|
hand_mask.index_fill_( |
|
0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["right_hand"]), 1.0 |
|
) |
|
|
|
|
|
hand_mesh = apply_vertex_mask(hand_mesh, hand_mask) |
|
|
|
|
|
BNI_object.F_B_trimesh = part_removal( |
|
BNI_object.F_B_trimesh, |
|
hand_mesh, |
|
cfg.bni.hand_thres, |
|
device, |
|
smplx_mesh, |
|
region="hand" |
|
) |
|
side_mesh = part_removal( |
|
side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand" |
|
) |
|
hand_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_hand.obj") |
|
full_lst += [hand_mesh] |
|
|
|
full_lst += [BNI_object.F_B_trimesh] |
|
|
|
|
|
side_mesh = part_removal( |
|
side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False |
|
) |
|
|
|
full_lst += [side_mesh] |
|
|
|
|
|
BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj") |
|
side_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_side.obj") |
|
|
|
final_mesh = poisson( |
|
sum(full_lst), |
|
final_path, |
|
cfg.bni.poisson_depth, |
|
) |
|
print( |
|
colored(f"Poisson completion to : {final_path} ", "yellow") |
|
) |
|
|
|
dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces) |
|
rotate_recon_lst = dataset.render.get_image(cam_type="four") |
|
per_loop_lst.extend([in_tensor['image'][idx:idx + 1]] + rotate_recon_lst) |
|
|
|
if cfg.bni.texture_src == 'image': |
|
|
|
|
|
final_colors = query_color( |
|
torch.tensor(final_mesh.vertices).float(), |
|
torch.tensor(final_mesh.faces).long(), |
|
in_tensor["image"][idx:idx + 1], |
|
device=device, |
|
) |
|
final_mesh.visual.vertex_colors = final_colors |
|
final_mesh.export(final_path) |
|
final_mesh.export(final_path.replace(".obj", ".glb")) |
|
|
|
elif cfg.bni.texture_src == 'SD': |
|
|
|
|
|
pass |
|
|
|
if len(per_loop_lst) > 0: |
|
|
|
per_data_lst.append(get_optim_grid_image(per_loop_lst, None, nrow=5, type="cloth")) |
|
per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_cloth.png")) |
|
|
|
|
|
in_tensor["BNI_verts"].append(torch.tensor(final_mesh.vertices).float()) |
|
in_tensor["BNI_faces"].append(torch.tensor(final_mesh.faces).long()) |
|
|
|
os.makedirs(osp.join(out_dir, cfg.name, "vid"), exist_ok=True) |
|
in_tensor["uncrop_param"] = data["uncrop_param"] |
|
in_tensor["img_raw"] = data["img_raw"] |
|
torch.save(in_tensor, osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt")) |
|
|
|
smpl_glb_path = smpl_obj_path.replace(".obj", ".glb") |
|
|
|
|
|
refine_glb_path = final_path.replace(".obj", ".glb") |
|
overlap_path = img_overlap_path |
|
vis_tensor_path = osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt") |
|
|
|
|
|
for element in dir(): |
|
if 'path' not in element: |
|
del locals()[element] |
|
|
|
import gc |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
return [smpl_glb_path, refine_glb_path, overlap_path, vis_tensor_path] |
|
|