Spaces:
Sleeping
Sleeping
# Dependencies, see also requirement.txt ;) | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
from scenedetect import open_video, SceneManager | |
from scenedetect.detectors import ContentDetector | |
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip | |
def convert_to_tuple(list): | |
return tuple(list); | |
def clear_app(): | |
return None, 27, None, None, None | |
def find_scenes(video_path, threshold): | |
# file name without extension | |
filename = os.path.splitext(os.path.basename(video_path))[0] | |
# Open our video, create a scene manager, and add a detector. | |
video = open_video(video_path) | |
scene_manager = SceneManager() | |
scene_manager.add_detector( | |
ContentDetector(threshold=threshold)) | |
# Start detection | |
scene_manager.detect_scenes(video, show_progress=True) | |
scene_list = scene_manager.get_scene_list() | |
# Push the list of scenes into data_outputs | |
data_outputs.append(scene_list) | |
gradio_components_outputs.append("json") | |
#print(scene_list) | |
timecodes = [] | |
if not scene_list: | |
gr.Warning("No scenes detected in this video") | |
return None, None, None | |
timecodes.append({"title": filename + ".mp4", "fps": scene_list[0][0].get_framerate()}) | |
shots = [] | |
stills = [] | |
# For each shot found, set entry and exit points as seconds from frame number | |
# Then split video into chunks and store them into shots List | |
# Then extract first frame of each shot as thumbnail for the gallery | |
for i, shot in enumerate(scene_list): | |
# STEP 1 | |
# Get timecode in seconds | |
framerate = shot[0].get_framerate() | |
shot_in = shot[0].get_frames() / framerate | |
shot_out = shot[1].get_frames() / framerate | |
tc_in = shot[0].get_timecode() | |
tc_out = shot[1].get_timecode() | |
frame_in = shot[0].get_frames() | |
frame_out = shot[1].get_frames() | |
timecode = {"tc_in": tc_in, "tc_out": tc_out, "frame_in": frame_in, "frame_out": frame_out} | |
timecodes.append(timecode) | |
# Set name template for each shot | |
target_name = "shot_" + str(i+1) + "_" + str(filename) + ".mp4" | |
# Split chunk | |
ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname=target_name) | |
# Push chunk into shots List | |
shots.append(target_name) | |
# Push each chunk into data_outputs | |
data_outputs.append(target_name) | |
gradio_components_outputs.append("video") | |
# ————————————————————————————————————————————————— | |
# STEP 2 | |
# extract first frame of each shot with cv2 | |
vid = cv2.VideoCapture(video_path) | |
fps = vid.get(cv2.CAP_PROP_FPS) | |
print('frames per second =',fps) | |
frame_id = shot[0].get_frames() # value from scene_list from step 1 | |
vid.set(cv2.CAP_PROP_POS_FRAMES, frame_id) | |
ret, frame = vid.read() | |
# Save frame as PNG file | |
img = str(frame_id) + '_screenshot.png' | |
cv2.imwrite(img,frame) | |
# Push image into stills List | |
stills.append((img, 'shot ' + str(i+1))) | |
# Push the list of video shots into data_outputs for Gradio file component | |
data_outputs.append(shots) | |
gradio_components_outputs.append("file") | |
# Push the list of still images into data_outputs | |
data_outputs.append(stills) | |
gradio_components_outputs.append("gallery") | |
# This would have been used as gradio outputs, | |
# if we could set number of outputs after the interface launch | |
# That's not (yet ?) possible | |
results = convert_to_tuple(data_outputs) | |
print(results) | |
# return List of shots as JSON, List of video chunks, List of still images | |
# * | |
# Would be nice to be able to return my results tuple as outputs, | |
# while number of chunks found is not fixed: | |
# return results | |
return timecodes, shots, stills | |
# ————————————————————————————————————————————————— | |
# SET DATA AND COMPONENTS OUTPUTS | |
# This would be filled like this: | |
# data_outputs = [ [List from detection], "video_chunk_n0.mp4", "video_chunk_n1.mp4", ... , "video_chunk_n.mp4", [List of video filepath to download], [List of still images from each shot found] ] | |
data_outputs = [] | |
# This would be filled like this: | |
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ] | |
gradio_components_outputs = [] | |
#SET OUTPUTS | |
# This would be nice if number of outputs could be set after Interface Launch: | |
# because we do not know how many shots will be detected | |
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ] | |
# outputs = gradio_components_outputs | |
# ANOTHER SOLUTION WOULD BE USING A (FUTURE ?) "VIDEO GALLERY" GRADIO COMPONENT FROM LIST :) | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown(""" | |
# Scene Edit Detection | |
Copy of @fffiloni's gradio demo of PySceneDetect. | |
Automatically find all the shots in a video. | |
Accepts mp4 format. Works only with videos that have cuts in them. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
video_input = gr.Video(sources="upload", format="mp4", label="Video Sequence", mirror_webcam = False) | |
threshold = gr.Slider(label="Threshold pixel comparison: if exceeded, triggers a scene cut. Default: 27.0", minimum=15.0, maximum=40.0, value=27.0) | |
with gr.Row(): | |
clear_button = gr.Button(value=("Clear")) | |
run_button = gr.Button(value = "Submit", variant = "primary") | |
with gr.Column(): | |
json_output = gr.JSON(label="Shots detected") | |
file_output = gr.File(label="Downloadable Shots") | |
gallery_output = gr.Gallery(label="Still Images from each shot", object_fit = "cover", columns = 3) | |
run_button.click(fn=find_scenes, inputs=[video_input, threshold], outputs=[json_output, file_output, gallery_output]) | |
clear_button.click(fn=clear_app, inputs = None, outputs=[video_input, threshold, json_output, file_output, gallery_output]) | |
demo.queue().launch(debug=True) |