Spaces:
No application file
No application file
Updated sheesh
Browse files- TSLA_stock_price.csv +3 -0
- __pycache__/feature_engineering.cpython-311.pyc +0 -0
- feature_view.ipynb +0 -0
- news_articles.csv +0 -0
- news_exp.ipynb +0 -0
- news_experimenting.ipynb +0 -410
- news_experimenting1.ipynb +0 -0
- tesla_articles.json +0 -0
TSLA_stock_price.csv
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
date,1. open,2. high,3. low,4. close,5. volume
|
|
|
|
|
|
|
2 |
2024-04-24,162.84,167.97,157.51,162.13,181178020.0
|
3 |
2024-04-23,143.33,147.26,141.11,144.68,124545104.0
|
4 |
2024-04-22,140.56,144.44,138.8025,142.05,107097564.0
|
|
|
1 |
date,1. open,2. high,3. low,4. close,5. volume
|
2 |
+
2024-04-29,188.42,198.87,184.54,194.05,243869678.0
|
3 |
+
2024-04-26,168.85,172.12,166.37,168.29,109815725.0
|
4 |
+
2024-04-25,158.96,170.88,158.36,170.18,126427521.0
|
5 |
2024-04-24,162.84,167.97,157.51,162.13,181178020.0
|
6 |
2024-04-23,143.33,147.26,141.11,144.68,124545104.0
|
7 |
2024-04-22,140.56,144.44,138.8025,142.05,107097564.0
|
__pycache__/feature_engineering.cpython-311.pyc
CHANGED
Binary files a/__pycache__/feature_engineering.cpython-311.pyc and b/__pycache__/feature_engineering.cpython-311.pyc differ
|
|
feature_view.ipynb
ADDED
File without changes
|
news_articles.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
news_exp.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
news_experimenting.ipynb
DELETED
@@ -1,410 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 31,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import requests\n",
|
10 |
-
"import pandas as pd\n",
|
11 |
-
"from datetime import datetime\n",
|
12 |
-
"from textblob import TextBlob"
|
13 |
-
]
|
14 |
-
},
|
15 |
-
{
|
16 |
-
"cell_type": "code",
|
17 |
-
"execution_count": 41,
|
18 |
-
"metadata": {},
|
19 |
-
"outputs": [],
|
20 |
-
"source": [
|
21 |
-
"from dotenv import load_dotenv\n",
|
22 |
-
"import os"
|
23 |
-
]
|
24 |
-
},
|
25 |
-
{
|
26 |
-
"cell_type": "code",
|
27 |
-
"execution_count": 43,
|
28 |
-
"metadata": {},
|
29 |
-
"outputs": [],
|
30 |
-
"source": [
|
31 |
-
"load_dotenv()\n",
|
32 |
-
"\n",
|
33 |
-
"def fetch_tesla_news(api_key, start_date, end_date):\n",
|
34 |
-
" url = \"https://api.marketaux.com/v1/news/all?symbols=TSLA&filter_entities=true&language=en&api_token=iy6rRX4oxFrouZocXr8JNpOzaxZLk3UvMfoMGxYs\" # Modify this based on the exact endpoint you need\n",
|
35 |
-
" headers = {\n",
|
36 |
-
" \"x-api-key\": api_key\n",
|
37 |
-
" }\n",
|
38 |
-
" # Since each page corresponds to a single request, limit the number of pages to 100\n",
|
39 |
-
" for page in range(1, 101): # start from page 1 to page 100\n",
|
40 |
-
" params = {\n",
|
41 |
-
" \"tickers\": \"TSLA\",\n",
|
42 |
-
" \"filter_entities\": \"true\",\n",
|
43 |
-
" \"language\": \"en\",\n",
|
44 |
-
" \"from\": start_date,\n",
|
45 |
-
" \"to\": end_date,\n",
|
46 |
-
" \"page\": page\n",
|
47 |
-
" }\n",
|
48 |
-
" \n",
|
49 |
-
" response = requests.get(url, headers=headers, params=params)\n",
|
50 |
-
" if response.status_code == 200:\n",
|
51 |
-
" return pd.json_normalize(response.json()['data'])\n",
|
52 |
-
" else:\n",
|
53 |
-
" raise Exception(f\"Failed to fetch data: {response.text}\")"
|
54 |
-
]
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"cell_type": "code",
|
58 |
-
"execution_count": 44,
|
59 |
-
"metadata": {},
|
60 |
-
"outputs": [
|
61 |
-
{
|
62 |
-
"name": "stdout",
|
63 |
-
"output_type": "stream",
|
64 |
-
"text": [
|
65 |
-
" uuid \\\n",
|
66 |
-
"0 99ce54fb-eb5b-4c9d-be66-6a56aa9f6de3 \n",
|
67 |
-
"1 9286f959-f5ea-4b95-88e8-7ba99a472ca5 \n",
|
68 |
-
"2 92e41393-f923-4c98-ba38-5bab89fedabd \n",
|
69 |
-
"\n",
|
70 |
-
" title \\\n",
|
71 |
-
"0 S&P 500 gains as investors digest positive ear... \n",
|
72 |
-
"1 3 Defensive Stocks to Protect Your Portfolio i... \n",
|
73 |
-
"2 Tesla to lay off more than 3,000 employees in ... \n",
|
74 |
-
"\n",
|
75 |
-
" description keywords \\\n",
|
76 |
-
"0 Benchmark S&P 500 rose on\\nTuesday following p... Markets \n",
|
77 |
-
"1 Stocks Analysis by The Tokenist (Timothy Fries... \n",
|
78 |
-
"2 Tesla is set to cut 3,332\\njobs in California,... Markets \n",
|
79 |
-
"\n",
|
80 |
-
" snippet \\\n",
|
81 |
-
"0 * Tesla set to kick off Magnificent Seven earn... \n",
|
82 |
-
"1 After the Iran-Israel situation fizzled out fo... \n",
|
83 |
-
"2 Tesla, Inc. designs, builds, and sells electri... \n",
|
84 |
-
"\n",
|
85 |
-
" url \\\n",
|
86 |
-
"0 https://www.marketscreener.com/quote/stock/TES... \n",
|
87 |
-
"1 https://www.investing.com/analysis/3-defensive... \n",
|
88 |
-
"2 https://www.marketscreener.com/quote/stock/TES... \n",
|
89 |
-
"\n",
|
90 |
-
" image_url language \\\n",
|
91 |
-
"0 https://img.zonebourse.com/reuters/2016-04/201... en \n",
|
92 |
-
"1 https://i-invdn-com.investing.com/redesign/ima... en \n",
|
93 |
-
"2 https://www.marketscreener.com/images/reuters/... en \n",
|
94 |
-
"\n",
|
95 |
-
" published_at source relevance_score \\\n",
|
96 |
-
"0 2024-04-23T19:10:43.000000Z marketscreener.com None \n",
|
97 |
-
"1 2024-04-23T19:06:00.000000Z investing.com None \n",
|
98 |
-
"2 2024-04-23T18:50:54.000000Z marketscreener.com None \n",
|
99 |
-
"\n",
|
100 |
-
" entities \\\n",
|
101 |
-
"0 [{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex... \n",
|
102 |
-
"1 [{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex... \n",
|
103 |
-
"2 [{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex... \n",
|
104 |
-
"\n",
|
105 |
-
" similar \n",
|
106 |
-
"0 [] \n",
|
107 |
-
"1 [] \n",
|
108 |
-
"2 [{'uuid': 'df8f1cf3-89ca-4430-975a-131b9c31245... \n"
|
109 |
-
]
|
110 |
-
}
|
111 |
-
],
|
112 |
-
"source": [
|
113 |
-
"api_key = os.environ.get('news_api')\n",
|
114 |
-
"tesla_news_df = fetch_tesla_news(api_key, \"2017-01-01\", datetime.now().strftime('%Y-%m-%d'))\n",
|
115 |
-
"print(tesla_news_df.head())"
|
116 |
-
]
|
117 |
-
},
|
118 |
-
{
|
119 |
-
"cell_type": "code",
|
120 |
-
"execution_count": 40,
|
121 |
-
"metadata": {},
|
122 |
-
"outputs": [
|
123 |
-
{
|
124 |
-
"data": {
|
125 |
-
"text/html": [
|
126 |
-
"<div>\n",
|
127 |
-
"<style scoped>\n",
|
128 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
129 |
-
" vertical-align: middle;\n",
|
130 |
-
" }\n",
|
131 |
-
"\n",
|
132 |
-
" .dataframe tbody tr th {\n",
|
133 |
-
" vertical-align: top;\n",
|
134 |
-
" }\n",
|
135 |
-
"\n",
|
136 |
-
" .dataframe thead th {\n",
|
137 |
-
" text-align: right;\n",
|
138 |
-
" }\n",
|
139 |
-
"</style>\n",
|
140 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
141 |
-
" <thead>\n",
|
142 |
-
" <tr style=\"text-align: right;\">\n",
|
143 |
-
" <th></th>\n",
|
144 |
-
" <th>uuid</th>\n",
|
145 |
-
" <th>title</th>\n",
|
146 |
-
" <th>description</th>\n",
|
147 |
-
" <th>keywords</th>\n",
|
148 |
-
" <th>snippet</th>\n",
|
149 |
-
" <th>url</th>\n",
|
150 |
-
" <th>image_url</th>\n",
|
151 |
-
" <th>language</th>\n",
|
152 |
-
" <th>published_at</th>\n",
|
153 |
-
" <th>source</th>\n",
|
154 |
-
" <th>relevance_score</th>\n",
|
155 |
-
" <th>entities</th>\n",
|
156 |
-
" <th>similar</th>\n",
|
157 |
-
" </tr>\n",
|
158 |
-
" </thead>\n",
|
159 |
-
" <tbody>\n",
|
160 |
-
" <tr>\n",
|
161 |
-
" <th>0</th>\n",
|
162 |
-
" <td>daf76e3e-caea-4c92-a461-6b3132655788</td>\n",
|
163 |
-
" <td>Stock market today: US futures climb as earnin...</td>\n",
|
164 |
-
" <td>The wait for Tesla results is on as investors ...</td>\n",
|
165 |
-
" <td></td>\n",
|
166 |
-
" <td>US stocks climbed on Tuesday, on track for fur...</td>\n",
|
167 |
-
" <td>https://finance.yahoo.com/news/stock-market-to...</td>\n",
|
168 |
-
" <td>https://s.yimg.com/ny/api/res/1.2/mqjC0VUO61dY...</td>\n",
|
169 |
-
" <td>en</td>\n",
|
170 |
-
" <td>2024-04-23T11:22:53.000000Z</td>\n",
|
171 |
-
" <td>finance.yahoo.com</td>\n",
|
172 |
-
" <td>None</td>\n",
|
173 |
-
" <td>[{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex...</td>\n",
|
174 |
-
" <td>[{'uuid': '01cd65de-530d-407a-96c9-5b3359e98a0...</td>\n",
|
175 |
-
" </tr>\n",
|
176 |
-
" <tr>\n",
|
177 |
-
" <th>1</th>\n",
|
178 |
-
" <td>8dab10ca-5b23-465a-aa86-360bc987a774</td>\n",
|
179 |
-
" <td>5 things to know before the stock market opens...</td>\n",
|
180 |
-
" <td>Here are the most important news items that in...</td>\n",
|
181 |
-
" <td>Investment strategy, Economy, Markets, Busines...</td>\n",
|
182 |
-
" <td>In this article CPRI Follow your favorite stoc...</td>\n",
|
183 |
-
" <td>https://www.cnbc.com/2024/04/23/5-things-to-kn...</td>\n",
|
184 |
-
" <td>https://image.cnbcfm.com/api/v1/image/10692170...</td>\n",
|
185 |
-
" <td>en</td>\n",
|
186 |
-
" <td>2024-04-23T11:16:00.000000Z</td>\n",
|
187 |
-
" <td>cnbc.com</td>\n",
|
188 |
-
" <td>None</td>\n",
|
189 |
-
" <td>[{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex...</td>\n",
|
190 |
-
" <td>[]</td>\n",
|
191 |
-
" </tr>\n",
|
192 |
-
" <tr>\n",
|
193 |
-
" <th>2</th>\n",
|
194 |
-
" <td>b8c381b9-4187-433e-ad15-cecc9d227b13</td>\n",
|
195 |
-
" <td>Wall Street Breakfast Podcast: UNH: Personal D...</td>\n",
|
196 |
-
" <td>UnitedHealth confirms personal data compromise...</td>\n",
|
197 |
-
" <td></td>\n",
|
198 |
-
" <td>JHVEPhoto/iStock Editorial via Getty Images\\n\\...</td>\n",
|
199 |
-
" <td>https://seekingalpha.com/article/4685243-wall-...</td>\n",
|
200 |
-
" <td>https://static.seekingalpha.com/cdn/s3/uploads...</td>\n",
|
201 |
-
" <td>en</td>\n",
|
202 |
-
" <td>2024-04-23T11:00:00.000000Z</td>\n",
|
203 |
-
" <td>seekingalpha.com</td>\n",
|
204 |
-
" <td>None</td>\n",
|
205 |
-
" <td>[{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex...</td>\n",
|
206 |
-
" <td>[]</td>\n",
|
207 |
-
" </tr>\n",
|
208 |
-
" </tbody>\n",
|
209 |
-
"</table>\n",
|
210 |
-
"</div>"
|
211 |
-
],
|
212 |
-
"text/plain": [
|
213 |
-
" uuid \\\n",
|
214 |
-
"0 daf76e3e-caea-4c92-a461-6b3132655788 \n",
|
215 |
-
"1 8dab10ca-5b23-465a-aa86-360bc987a774 \n",
|
216 |
-
"2 b8c381b9-4187-433e-ad15-cecc9d227b13 \n",
|
217 |
-
"\n",
|
218 |
-
" title \\\n",
|
219 |
-
"0 Stock market today: US futures climb as earnin... \n",
|
220 |
-
"1 5 things to know before the stock market opens... \n",
|
221 |
-
"2 Wall Street Breakfast Podcast: UNH: Personal D... \n",
|
222 |
-
"\n",
|
223 |
-
" description \\\n",
|
224 |
-
"0 The wait for Tesla results is on as investors ... \n",
|
225 |
-
"1 Here are the most important news items that in... \n",
|
226 |
-
"2 UnitedHealth confirms personal data compromise... \n",
|
227 |
-
"\n",
|
228 |
-
" keywords \\\n",
|
229 |
-
"0 \n",
|
230 |
-
"1 Investment strategy, Economy, Markets, Busines... \n",
|
231 |
-
"2 \n",
|
232 |
-
"\n",
|
233 |
-
" snippet \\\n",
|
234 |
-
"0 US stocks climbed on Tuesday, on track for fur... \n",
|
235 |
-
"1 In this article CPRI Follow your favorite stoc... \n",
|
236 |
-
"2 JHVEPhoto/iStock Editorial via Getty Images\\n\\... \n",
|
237 |
-
"\n",
|
238 |
-
" url \\\n",
|
239 |
-
"0 https://finance.yahoo.com/news/stock-market-to... \n",
|
240 |
-
"1 https://www.cnbc.com/2024/04/23/5-things-to-kn... \n",
|
241 |
-
"2 https://seekingalpha.com/article/4685243-wall-... \n",
|
242 |
-
"\n",
|
243 |
-
" image_url language \\\n",
|
244 |
-
"0 https://s.yimg.com/ny/api/res/1.2/mqjC0VUO61dY... en \n",
|
245 |
-
"1 https://image.cnbcfm.com/api/v1/image/10692170... en \n",
|
246 |
-
"2 https://static.seekingalpha.com/cdn/s3/uploads... en \n",
|
247 |
-
"\n",
|
248 |
-
" published_at source relevance_score \\\n",
|
249 |
-
"0 2024-04-23T11:22:53.000000Z finance.yahoo.com None \n",
|
250 |
-
"1 2024-04-23T11:16:00.000000Z cnbc.com None \n",
|
251 |
-
"2 2024-04-23T11:00:00.000000Z seekingalpha.com None \n",
|
252 |
-
"\n",
|
253 |
-
" entities \\\n",
|
254 |
-
"0 [{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex... \n",
|
255 |
-
"1 [{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex... \n",
|
256 |
-
"2 [{'symbol': 'TSLA', 'name': 'Tesla, Inc.', 'ex... \n",
|
257 |
-
"\n",
|
258 |
-
" similar \n",
|
259 |
-
"0 [{'uuid': '01cd65de-530d-407a-96c9-5b3359e98a0... \n",
|
260 |
-
"1 [] \n",
|
261 |
-
"2 [] "
|
262 |
-
]
|
263 |
-
},
|
264 |
-
"execution_count": 40,
|
265 |
-
"metadata": {},
|
266 |
-
"output_type": "execute_result"
|
267 |
-
}
|
268 |
-
],
|
269 |
-
"source": [
|
270 |
-
"tesla_news_df"
|
271 |
-
]
|
272 |
-
},
|
273 |
-
{
|
274 |
-
"cell_type": "code",
|
275 |
-
"execution_count": 30,
|
276 |
-
"metadata": {},
|
277 |
-
"outputs": [
|
278 |
-
{
|
279 |
-
"name": "stdout",
|
280 |
-
"output_type": "stream",
|
281 |
-
"text": [
|
282 |
-
"uuid 0\n",
|
283 |
-
"title 0\n",
|
284 |
-
"description 0\n",
|
285 |
-
"keywords 0\n",
|
286 |
-
"snippet 0\n",
|
287 |
-
"url 0\n",
|
288 |
-
"image_url 0\n",
|
289 |
-
"language 0\n",
|
290 |
-
"published_at 0\n",
|
291 |
-
"source 0\n",
|
292 |
-
"relevance_score 3\n",
|
293 |
-
"entities 0\n",
|
294 |
-
"similar 0\n",
|
295 |
-
"dtype: int64\n"
|
296 |
-
]
|
297 |
-
}
|
298 |
-
],
|
299 |
-
"source": [
|
300 |
-
"# Clean text data, Check for any missing values or inconsistencies in the data\n",
|
301 |
-
"tesla_news_df['description'] = tesla_news_df['description'].apply(lambda x: x.lower().replace('[^\\w\\s]', ''))\n",
|
302 |
-
"\n",
|
303 |
-
"# Check for any missing values\n",
|
304 |
-
"print(tesla_news_df.isnull().sum())\n"
|
305 |
-
]
|
306 |
-
},
|
307 |
-
{
|
308 |
-
"cell_type": "code",
|
309 |
-
"execution_count": 32,
|
310 |
-
"metadata": {},
|
311 |
-
"outputs": [
|
312 |
-
{
|
313 |
-
"name": "stdout",
|
314 |
-
"output_type": "stream",
|
315 |
-
"text": [
|
316 |
-
" title sentiment\n",
|
317 |
-
"0 Wall Street Breakfast: What Moved Markets 0.197443\n",
|
318 |
-
"1 1 \"Magnificent Seven\" Stock With 1,234% Upside... 1.000000\n",
|
319 |
-
"2 Market Today: Tech Giants Reignite AI Craze, A... -0.024242\n"
|
320 |
-
]
|
321 |
-
}
|
322 |
-
],
|
323 |
-
"source": [
|
324 |
-
"# Sentiment analysis on descriptions\n",
|
325 |
-
"tesla_news_df['sentiment'] = tesla_news_df['description'].apply(lambda text: TextBlob(text).sentiment.polarity)\n",
|
326 |
-
"\n",
|
327 |
-
"print(tesla_news_df[['title', 'sentiment']])\n"
|
328 |
-
]
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"cell_type": "code",
|
332 |
-
"execution_count": 35,
|
333 |
-
"metadata": {},
|
334 |
-
"outputs": [],
|
335 |
-
"source": [
|
336 |
-
"# Example: Counting the number of articles per day\n",
|
337 |
-
"tesla_news_df['published_at'] = pd.to_datetime(tesla_news_df['published_at']) # Convert to datetime\n",
|
338 |
-
"tesla_news_df['date'] = tesla_news_df['published_at'].dt.date\n",
|
339 |
-
"daily_news_count = tesla_news_df.groupby('date').size()\n"
|
340 |
-
]
|
341 |
-
},
|
342 |
-
{
|
343 |
-
"cell_type": "code",
|
344 |
-
"execution_count": 37,
|
345 |
-
"metadata": {},
|
346 |
-
"outputs": [
|
347 |
-
{
|
348 |
-
"name": "stdout",
|
349 |
-
"output_type": "stream",
|
350 |
-
"text": [
|
351 |
-
"<class 'pandas.core.frame.DataFrame'>\n",
|
352 |
-
"RangeIndex: 3 entries, 0 to 2\n",
|
353 |
-
"Data columns (total 15 columns):\n",
|
354 |
-
" # Column Non-Null Count Dtype \n",
|
355 |
-
"--- ------ -------------- ----- \n",
|
356 |
-
" 0 uuid 3 non-null object \n",
|
357 |
-
" 1 title 3 non-null object \n",
|
358 |
-
" 2 description 3 non-null object \n",
|
359 |
-
" 3 keywords 3 non-null object \n",
|
360 |
-
" 4 snippet 3 non-null object \n",
|
361 |
-
" 5 url 3 non-null object \n",
|
362 |
-
" 6 image_url 3 non-null object \n",
|
363 |
-
" 7 language 3 non-null object \n",
|
364 |
-
" 8 published_at 3 non-null datetime64[ns, UTC]\n",
|
365 |
-
" 9 source 3 non-null object \n",
|
366 |
-
" 10 relevance_score 0 non-null object \n",
|
367 |
-
" 11 entities 3 non-null object \n",
|
368 |
-
" 12 similar 3 non-null object \n",
|
369 |
-
" 13 sentiment 3 non-null float64 \n",
|
370 |
-
" 14 date 3 non-null object \n",
|
371 |
-
"dtypes: datetime64[ns, UTC](1), float64(1), object(13)\n",
|
372 |
-
"memory usage: 492.0+ bytes\n"
|
373 |
-
]
|
374 |
-
}
|
375 |
-
],
|
376 |
-
"source": [
|
377 |
-
"tesla_news_df.info()"
|
378 |
-
]
|
379 |
-
},
|
380 |
-
{
|
381 |
-
"cell_type": "code",
|
382 |
-
"execution_count": null,
|
383 |
-
"metadata": {},
|
384 |
-
"outputs": [],
|
385 |
-
"source": []
|
386 |
-
}
|
387 |
-
],
|
388 |
-
"metadata": {
|
389 |
-
"kernelspec": {
|
390 |
-
"display_name": "base",
|
391 |
-
"language": "python",
|
392 |
-
"name": "python3"
|
393 |
-
},
|
394 |
-
"language_info": {
|
395 |
-
"codemirror_mode": {
|
396 |
-
"name": "ipython",
|
397 |
-
"version": 3
|
398 |
-
},
|
399 |
-
"file_extension": ".py",
|
400 |
-
"mimetype": "text/x-python",
|
401 |
-
"name": "python",
|
402 |
-
"nbconvert_exporter": "python",
|
403 |
-
"pygments_lexer": "ipython3",
|
404 |
-
"version": "3.11.4"
|
405 |
-
},
|
406 |
-
"orig_nbformat": 4
|
407 |
-
},
|
408 |
-
"nbformat": 4,
|
409 |
-
"nbformat_minor": 2
|
410 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
news_experimenting1.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
tesla_articles.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|