Spaces:
Sleeping
Sleeping
Updating
Browse files- app.py +67 -70
- doc_processing.py +0 -2
app.py
CHANGED
@@ -1,21 +1,61 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from file_processing import get_paragraphs
|
4 |
-
import doc_processing as processing
|
5 |
|
6 |
####################################### Dashboard ######################################################
|
7 |
|
8 |
# App
|
9 |
-
st.title("Identify references to vulnerable groups.")
|
10 |
|
11 |
-
st.
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Document upload
|
18 |
-
uploaded_file = st.file_uploader("Upload your file here")
|
19 |
|
20 |
# Create text input box
|
21 |
#input_text = st.text_area(label='Please enter your text here', value="This policy has been implemented to support women.")
|
@@ -25,25 +65,25 @@ uploaded_file = st.file_uploader("Upload your file here")
|
|
25 |
######################################### Model #########################################################
|
26 |
|
27 |
# Load the model
|
28 |
-
model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")
|
29 |
|
30 |
# Define the classes
|
31 |
-
id2label = {
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
|
49 |
### Process document to paragraphs
|
@@ -62,46 +102,3 @@ id2label = {
|
|
62 |
|
63 |
# #Get the file path
|
64 |
|
65 |
-
file = st.file_uploader("File upload", type=['pdf', 'docx', 'txt'])
|
66 |
-
|
67 |
-
if uploaded_file is not None:
|
68 |
-
|
69 |
-
# Retrieve the file name
|
70 |
-
with tempfile.NamedTemporaryFile(mode="wb") as temp:
|
71 |
-
bytes_data = files.getvalue()
|
72 |
-
temp.write(bytes_data)
|
73 |
-
print(temp.name)
|
74 |
-
|
75 |
-
# Process file
|
76 |
-
par_list = get_paragraphs(temp.name)
|
77 |
-
|
78 |
-
### Make predictions
|
79 |
-
preds = vg_model(par_list)
|
80 |
-
|
81 |
-
# Get label names
|
82 |
-
preds_list = preds.tolist()
|
83 |
-
|
84 |
-
predictions_names=[]
|
85 |
-
|
86 |
-
# loop through each prediction
|
87 |
-
for ele in preds_list:
|
88 |
-
try:
|
89 |
-
index_of_one = ele.index(1)
|
90 |
-
except ValueError:
|
91 |
-
index_of_one = "NA"
|
92 |
-
if index_of_one != "NA":
|
93 |
-
name = id2label[index_of_one]
|
94 |
-
else:
|
95 |
-
name = "NA"
|
96 |
-
predictions_names.append(name)
|
97 |
-
|
98 |
-
# Combine the paragraphs and labels to a dataframe
|
99 |
-
df_predictions = pd.DataFrame({'Paragraph': par_list, 'Prediction': predictions_names})
|
100 |
-
|
101 |
-
# Drop all "Other" and "NA" predictions
|
102 |
-
filtered_df = df[df['Prediction'].isin(['Other', 'NA'])]
|
103 |
-
|
104 |
-
|
105 |
-
#####################################
|
106 |
-
st.write(df)
|
107 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
from utils.uploadAndExample import add_upload
|
|
|
|
|
3 |
|
4 |
####################################### Dashboard ######################################################
|
5 |
|
6 |
# App
|
|
|
7 |
|
8 |
+
st.set_page_config(page_title = 'Vulnerable Groups Identification',
|
9 |
+
initial_sidebar_state='expanded', layout="wide")
|
10 |
+
|
11 |
+
with st.sidebar:
|
12 |
+
# upload and example doc
|
13 |
+
choice = st.sidebar.radio(label = 'Select the Document',
|
14 |
+
help = 'You can upload the document \
|
15 |
+
or else you can try a example document',
|
16 |
+
options = ('Upload Document', 'Try Example'),
|
17 |
+
horizontal = True)
|
18 |
+
add_upload(choice)
|
19 |
+
|
20 |
+
with st.container():
|
21 |
+
st.markdown("<h2 style='text-align: center; color: black;'> Vulnerable Groups Identification </h2>", unsafe_allow_html=True)
|
22 |
+
st.write(' ')
|
23 |
+
|
24 |
+
with st.expander("ℹ️ - About this app", expanded=False):
|
25 |
+
st.write(
|
26 |
+
"""
|
27 |
+
The Vulnerable Groups Identification App is an open-source\
|
28 |
+
digital tool which aims to assist policy analysts and \
|
29 |
+
other users in extracting and filtering relevant \
|
30 |
+
information from public documents.
|
31 |
+
""")
|
32 |
+
st.write('**Definitions**')
|
33 |
+
|
34 |
+
st.caption("""
|
35 |
+
- **Place holder**: Place holder \
|
36 |
+
Place holder \
|
37 |
+
Place holder \
|
38 |
+
Place holder \
|
39 |
+
Place holder
|
40 |
+
""")
|
41 |
+
#c1, c2, c3 = st.columns([12,1,10])
|
42 |
+
#with c1:
|
43 |
+
#image = Image.open('docStore/img/flow.jpg')
|
44 |
+
#st.image(image)
|
45 |
+
#with c3:
|
46 |
+
#st.write("""
|
47 |
+
#What Happens in background?
|
48 |
+
|
49 |
+
#st.title("Identify references to vulnerable groups.")
|
50 |
+
|
51 |
+
#st.write("""Vulnerable groups encompass various communities and individuals who are disproportionately affected by the impacts of climate change
|
52 |
+
#due to their socioeconomic status, geographical location, or inherent characteristics. By incorporating the needs and perspectives of these groups
|
53 |
+
#into national climate policies, governments can ensure equitable outcomes, promote social justice, and strive to build resilience within the most marginalized populations,
|
54 |
+
#fostering a more sustainable and inclusive society as we navigate the challenges posed by climate change.This app allows you to identify whether a text contains any
|
55 |
+
#references to vulnerable groups, for example when talking about policy documents.""")
|
56 |
|
57 |
# Document upload
|
58 |
+
#uploaded_file = st.file_uploader("Upload your file here")
|
59 |
|
60 |
# Create text input box
|
61 |
#input_text = st.text_area(label='Please enter your text here', value="This policy has been implemented to support women.")
|
|
|
65 |
######################################### Model #########################################################
|
66 |
|
67 |
# Load the model
|
68 |
+
#model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")
|
69 |
|
70 |
# Define the classes
|
71 |
+
#id2label = {
|
72 |
+
# 0: 'Agricultural communities',
|
73 |
+
# 1: 'Children and Youth',
|
74 |
+
# 2: 'Coastal communities',
|
75 |
+
# 3: 'Drought-prone regions',
|
76 |
+
# 4: 'Economically disadvantaged communities',
|
77 |
+
# 5: 'Elderly population',
|
78 |
+
# 6: 'Ethnic minorities and indigenous people',
|
79 |
+
# 7: 'Informal sector workers',
|
80 |
+
# 8: 'Migrants and Refugees',
|
81 |
+
# 9: 'Other',
|
82 |
+
# 10: 'People with Disabilities',
|
83 |
+
# 11: 'Rural populations',
|
84 |
+
# 12: 'Sexual minorities (LGBTQI+)',
|
85 |
+
# 13: 'Urban populations',
|
86 |
+
# 14: 'Women'}
|
87 |
|
88 |
|
89 |
### Process document to paragraphs
|
|
|
102 |
|
103 |
# #Get the file path
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
doc_processing.py
CHANGED
@@ -54,8 +54,6 @@ def runPreprocessingPipeline(file_name:str, file_path:str,
|
|
54 |
|
55 |
return output_pre
|
56 |
|
57 |
-
st.write("Hello World")
|
58 |
-
|
59 |
def app():
|
60 |
with st.container():
|
61 |
if 'filepath' in st.session_state:
|
|
|
54 |
|
55 |
return output_pre
|
56 |
|
|
|
|
|
57 |
def app():
|
58 |
with st.container():
|
59 |
if 'filepath' in st.session_state:
|