vulnerability_2_1 / appStore /vulnerability_analysis.py
leavoigt's picture
Update appStore/vulnerability_analysis.py
154ee8f
raw
history blame
7.65 kB
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from utils.vulnerability_classifier import load_vulnerabilityClassifier, vulnerability_classification
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from utils.preprocessing import paraLengthCheck
from io import BytesIO
import xlsxwriter
import plotly.express as px
# Declare all the necessary variables
classifier_identifier = 'vulnerability'
params = get_classifier_params(classifier_identifier)
@st.cache_data
def to_excel(df,sectorlist):
len_df = len(df)
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1']
worksheet.data_validation('S2:S{}'.format(len_df),
{'validate': 'list',
'source': ['No', 'Yes', 'Discard']})
worksheet.data_validation('X2:X{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('T2:T{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('U2:U{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('V2:V{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
worksheet.data_validation('W2:U{}'.format(len_df),
{'validate': 'list',
'source': sectorlist + ['Blank']})
writer.save()
processed_data = output.getvalue()
return processed_data
def app():
### Main app code ###
with st.container():
if 'key0' in st.session_state:
df = st.session_state.key0
classifier = load_vulnerabilityClassifier(classifier_name=params['model_name'])
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
if sum(df['Target Label'] == 'TARGET') > 100:
warning_msg = ": This might take sometime, please sit back and relax."
else:
warning_msg = ""
df = vulnerability_classification(haystack_doc=df,
threshold= params['threshold'])
st.session_state.key0 = df
# # st.write(df)
# threshold= params['threshold']
# truth_df = df.drop(['text'],axis=1)
# truth_df = truth_df.astype(float) >= threshold
# truth_df = truth_df.astype(str)
# categories = list(truth_df.columns)
# placeholder = {}
# for val in categories:
# placeholder[val] = dict(truth_df[val].value_counts())
# count_df = pd.DataFrame.from_dict(placeholder)
# count_df = count_df.T
# count_df = count_df.reset_index()
# # st.write(count_df)
# placeholder = []
# for i in range(len(count_df)):
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'Yes'])
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'No'])
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
# # st.write("Total Paragraphs: {}".format(len(df)))
# fig = px.bar(count_df, x='category', y='count',
# color='truth_value')
# # c1, c2 = st.columns([1,1])
# # with c1:
# st.plotly_chart(fig,use_container_width= True)
# truth_df['labels'] = truth_df.apply(lambda x: {i if x[i]=='True' else None for i in categories}, axis=1)
# truth_df['labels'] = truth_df.apply(lambda x: list(x['labels'] -{None}),axis=1)
# # st.write(truth_df)
# df = pd.concat([df,truth_df['labels']],axis=1)
# df['Validation'] = 'No'
# df['Sector1'] = 'Blank'
# df['Sector2'] = 'Blank'
# df['Sector3'] = 'Blank'
# df['Sector4'] = 'Blank'
# df['Sector5'] = 'Blank'
# df_xlsx = to_excel(df,categories)
# st.download_button(label='📥 Download Current Result',
# data=df_xlsx ,
# # file_name= 'file_sector.xlsx')
# else:
# st.info("🤔 No document found, please try to upload it at the sidebar!")
# logging.warning("Terminated as no document provided")
# # Creating truth value dataframe
# if 'key' in st.session_state:
# if st.session_state.key is not None:
# df = st.session_state.key
# st.markdown("###### Select the threshold for classifier ######")
# c4, c5 = st.columns([1,1])
# with c4:
# threshold = st.slider("Threshold", min_value=0.00, max_value=1.0,
# step=0.01, value=0.5,
# help = "Keep High Value if want refined result, low if dont want to miss anything" )
# sectors =set(df.columns)
# removecols = {'Validation','Sector1','Sector2','Sector3','Sector4',
# 'Sector5','text'}
# sectors = list(sectors - removecols)
# placeholder = {}
# for val in sectors:
# temp = df[val].astype(float) > threshold
# temp = temp.astype(str)
# placeholder[val] = dict(temp.value_counts())
# count_df = pd.DataFrame.from_dict(placeholder)
# count_df = count_df.T
# count_df = count_df.reset_index()
# placeholder = []
# for i in range(len(count_df)):
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'False'])
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'True'])
# count_df = pd.DataFrame(placeholder, columns = ['sector','count','truth_value'])
# fig = px.bar(count_df, x='sector', y='count',
# color='truth_value',
# height=400)
# st.write("")
# st.plotly_chart(fig)
# df['Validation'] = 'No'
# df['Sector1'] = 'Blank'
# df['Sector2'] = 'Blank'
# df['Sector3'] = 'Blank'
# df['Sector4'] = 'Blank'
# df['Sector5'] = 'Blank'
# df_xlsx = to_excel(df,sectors)
# st.download_button(label='📥 Download Current Result',
# data=df_xlsx ,
# file_name= 'file_sector.xlsx')