Spaces:
Sleeping
Sleeping
basic chunking
Browse files- .DS_Store +0 -0
- Dockerfile +39 -0
- app/main.py +546 -0
- app/utils.py +0 -0
- params.cfg +0 -0
- requirements.txt +14 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
Dockerfile
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -------- base image --------
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
ENV PYTHONUNBUFFERED=1 \
|
| 5 |
+
OMP_NUM_THREADS=1 \
|
| 6 |
+
TOKENIZERS_PARALLELISM=false
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# ---------- Create Non-Root User ----------
|
| 10 |
+
# Ensures proper file permissions for dev and runtime
|
| 11 |
+
RUN useradd -m -u 1000 user
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# -------- install deps --------
|
| 15 |
+
WORKDIR /app
|
| 16 |
+
|
| 17 |
+
# ---------- Install Python Dependencies ----------
|
| 18 |
+
# Copy requirements and install as non-root user
|
| 19 |
+
COPY --chown=user requirements.txt .
|
| 20 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 21 |
+
|
| 22 |
+
# Install system dependencies for document processing
|
| 23 |
+
# RUN apt-get update && apt-get install -y \
|
| 24 |
+
# build-essential \
|
| 25 |
+
# && rm -rf /var/lib/apt/lists/*
|
| 26 |
+
|
| 27 |
+
# ---------- Copy Project Files ----------
|
| 28 |
+
# Set appropriate ownership and permissions
|
| 29 |
+
COPY --link --chown=1000 . .
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Create directories for document storage
|
| 33 |
+
RUN mkdir -p uploaded_docs processed_docs
|
| 34 |
+
|
| 35 |
+
# Expose Gradio default port
|
| 36 |
+
EXPOSE 7860 7863
|
| 37 |
+
|
| 38 |
+
# Launch with unbuffered output
|
| 39 |
+
CMD ["python", "-m", "app.main"]
|
app/main.py
ADDED
|
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from typing import Optional, Dict, Any, List
|
| 5 |
+
import uvicorn
|
| 6 |
+
import os
|
| 7 |
+
import hashlib
|
| 8 |
+
import logging
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from contextlib import asynccontextmanager
|
| 11 |
+
import json
|
| 12 |
+
import re
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
# Document processing imports
|
| 16 |
+
import PyPDF2
|
| 17 |
+
from docx import Document as DocxDocument
|
| 18 |
+
|
| 19 |
+
# Configure logging
|
| 20 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
# Create directories for document storage
|
| 24 |
+
UPLOAD_DIR = Path("uploaded_docs")
|
| 25 |
+
PROCESSED_DIR = Path("processed_docs")
|
| 26 |
+
UPLOAD_DIR.mkdir(exist_ok=True)
|
| 27 |
+
PROCESSED_DIR.mkdir(exist_ok=True)
|
| 28 |
+
|
| 29 |
+
# Models
|
| 30 |
+
class IngestRequest(BaseModel):
|
| 31 |
+
doc_id: str
|
| 32 |
+
file_content: bytes
|
| 33 |
+
filename: str
|
| 34 |
+
content_type: str
|
| 35 |
+
|
| 36 |
+
class IngestResponse(BaseModel):
|
| 37 |
+
doc_id: str
|
| 38 |
+
chunks_indexed: int
|
| 39 |
+
status: str
|
| 40 |
+
metadata: Dict[str, Any]
|
| 41 |
+
|
| 42 |
+
class DocumentChunk(BaseModel):
|
| 43 |
+
doc_id: str
|
| 44 |
+
chunk_id: str
|
| 45 |
+
content: str
|
| 46 |
+
metadata: Dict[str, Any]
|
| 47 |
+
|
| 48 |
+
# Global storage for processed documents (in production, use proper vector store)
|
| 49 |
+
DOCUMENT_STORE: Dict[str, List[DocumentChunk]] = {}
|
| 50 |
+
DOCUMENT_METADATA: Dict[str, Dict[str, Any]] = {}
|
| 51 |
+
|
| 52 |
+
def extract_text_from_pdf(file_path: str) -> tuple[str, Dict[str, Any]]:
|
| 53 |
+
"""Extract text from PDF file"""
|
| 54 |
+
try:
|
| 55 |
+
with open(file_path, 'rb') as file:
|
| 56 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
| 57 |
+
text = ""
|
| 58 |
+
metadata = {
|
| 59 |
+
"total_pages": len(pdf_reader.pages),
|
| 60 |
+
"page_texts": []
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
| 64 |
+
page_text = page.extract_text()
|
| 65 |
+
text += f"\n--- Page {page_num + 1} ---\n{page_text}"
|
| 66 |
+
metadata["page_texts"].append({
|
| 67 |
+
"page": page_num + 1,
|
| 68 |
+
"text": page_text,
|
| 69 |
+
"char_count": len(page_text)
|
| 70 |
+
})
|
| 71 |
+
|
| 72 |
+
return text, metadata
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logger.error(f"PDF extraction error: {str(e)}")
|
| 75 |
+
raise Exception(f"Failed to extract text from PDF: {str(e)}")
|
| 76 |
+
|
| 77 |
+
def extract_text_from_docx(file_path: str) -> tuple[str, Dict[str, Any]]:
|
| 78 |
+
"""Extract text from DOCX file"""
|
| 79 |
+
try:
|
| 80 |
+
doc = DocxDocument(file_path)
|
| 81 |
+
text = ""
|
| 82 |
+
metadata = {
|
| 83 |
+
"total_paragraphs": 0,
|
| 84 |
+
"paragraph_texts": []
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
for i, paragraph in enumerate(doc.paragraphs):
|
| 88 |
+
if paragraph.text.strip():
|
| 89 |
+
text += f"{paragraph.text}\n"
|
| 90 |
+
metadata["paragraph_texts"].append({
|
| 91 |
+
"paragraph": i + 1,
|
| 92 |
+
"text": paragraph.text,
|
| 93 |
+
"char_count": len(paragraph.text)
|
| 94 |
+
})
|
| 95 |
+
metadata["total_paragraphs"] += 1
|
| 96 |
+
|
| 97 |
+
return text, metadata
|
| 98 |
+
except Exception as e:
|
| 99 |
+
logger.error(f"DOCX extraction error: {str(e)}")
|
| 100 |
+
raise Exception(f"Failed to extract text from DOCX: {str(e)}")
|
| 101 |
+
|
| 102 |
+
def simple_text_splitter(text: str, chunk_size: int = 500, chunk_overlap: int = 50) -> List[str]:
|
| 103 |
+
"""Simple text splitter without external dependencies"""
|
| 104 |
+
if not text:
|
| 105 |
+
return []
|
| 106 |
+
|
| 107 |
+
# Split by common separators in order of preference
|
| 108 |
+
separators = ["\n\n", "\n", ". ", "! ", "? ", " "]
|
| 109 |
+
|
| 110 |
+
def split_text_recursive(text: str, separators: List[str]) -> List[str]:
|
| 111 |
+
if not separators:
|
| 112 |
+
# If no separators left, split by character count
|
| 113 |
+
chunks = []
|
| 114 |
+
for i in range(0, len(text), chunk_size - chunk_overlap):
|
| 115 |
+
chunk = text[i:i + chunk_size]
|
| 116 |
+
if chunk.strip():
|
| 117 |
+
chunks.append(chunk.strip())
|
| 118 |
+
return chunks
|
| 119 |
+
|
| 120 |
+
separator = separators[0]
|
| 121 |
+
remaining_separators = separators[1:]
|
| 122 |
+
|
| 123 |
+
splits = text.split(separator)
|
| 124 |
+
chunks = []
|
| 125 |
+
current_chunk = ""
|
| 126 |
+
|
| 127 |
+
for split in splits:
|
| 128 |
+
# If adding this split would exceed chunk_size
|
| 129 |
+
if len(current_chunk) + len(split) + len(separator) > chunk_size:
|
| 130 |
+
if current_chunk:
|
| 131 |
+
# If current chunk is still too big, recursively split it
|
| 132 |
+
if len(current_chunk) > chunk_size:
|
| 133 |
+
sub_chunks = split_text_recursive(current_chunk, remaining_separators)
|
| 134 |
+
chunks.extend(sub_chunks)
|
| 135 |
+
else:
|
| 136 |
+
chunks.append(current_chunk.strip())
|
| 137 |
+
current_chunk = split
|
| 138 |
+
else:
|
| 139 |
+
if current_chunk:
|
| 140 |
+
current_chunk += separator + split
|
| 141 |
+
else:
|
| 142 |
+
current_chunk = split
|
| 143 |
+
|
| 144 |
+
# Add the last chunk
|
| 145 |
+
if current_chunk:
|
| 146 |
+
if len(current_chunk) > chunk_size:
|
| 147 |
+
sub_chunks = split_text_recursive(current_chunk, remaining_separators)
|
| 148 |
+
chunks.extend(sub_chunks)
|
| 149 |
+
else:
|
| 150 |
+
chunks.append(current_chunk.strip())
|
| 151 |
+
|
| 152 |
+
return chunks
|
| 153 |
+
|
| 154 |
+
# Split the text
|
| 155 |
+
initial_chunks = split_text_recursive(text, separators)
|
| 156 |
+
|
| 157 |
+
# Add overlap between chunks
|
| 158 |
+
final_chunks = []
|
| 159 |
+
for i, chunk in enumerate(initial_chunks):
|
| 160 |
+
if i > 0 and chunk_overlap > 0:
|
| 161 |
+
# Add overlap from previous chunk
|
| 162 |
+
prev_chunk = initial_chunks[i-1]
|
| 163 |
+
overlap = prev_chunk[-chunk_overlap:] if len(prev_chunk) > chunk_overlap else prev_chunk
|
| 164 |
+
chunk = overlap + " " + chunk
|
| 165 |
+
final_chunks.append(chunk)
|
| 166 |
+
|
| 167 |
+
return [chunk for chunk in final_chunks if chunk.strip()]
|
| 168 |
+
|
| 169 |
+
def clean_and_chunk_text(text: str, doc_id: str) -> List[DocumentChunk]:
|
| 170 |
+
"""Clean text and split into chunks"""
|
| 171 |
+
# Basic text cleaning
|
| 172 |
+
text = re.sub(r'\n+', '\n', text) # Remove multiple newlines
|
| 173 |
+
text = re.sub(r'\s+', ' ', text) # Remove multiple spaces
|
| 174 |
+
text = text.strip()
|
| 175 |
+
|
| 176 |
+
# Split text into chunks using simple splitter
|
| 177 |
+
chunks = simple_text_splitter(text, chunk_size=500, chunk_overlap=50)
|
| 178 |
+
|
| 179 |
+
# Create DocumentChunk objects
|
| 180 |
+
document_chunks = []
|
| 181 |
+
for i, chunk_text in enumerate(chunks):
|
| 182 |
+
chunk = DocumentChunk(
|
| 183 |
+
doc_id=doc_id,
|
| 184 |
+
chunk_id=f"{doc_id}_chunk_{i}",
|
| 185 |
+
content=chunk_text,
|
| 186 |
+
metadata={
|
| 187 |
+
"chunk_index": i,
|
| 188 |
+
"chunk_length": len(chunk_text),
|
| 189 |
+
"created_at": datetime.now().isoformat()
|
| 190 |
+
}
|
| 191 |
+
)
|
| 192 |
+
document_chunks.append(chunk)
|
| 193 |
+
|
| 194 |
+
return document_chunks
|
| 195 |
+
|
| 196 |
+
def generate_doc_id(filename: str, content: bytes) -> str:
|
| 197 |
+
"""Generate unique document ID"""
|
| 198 |
+
# Create hash from content for uniqueness
|
| 199 |
+
content_hash = hashlib.md5(content).hexdigest()[:8]
|
| 200 |
+
# Clean filename
|
| 201 |
+
clean_name = re.sub(r'[^a-zA-Z0-9._-]', '_', filename)
|
| 202 |
+
# Remove extension
|
| 203 |
+
name_without_ext = os.path.splitext(clean_name)[0]
|
| 204 |
+
# Create doc_id
|
| 205 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 206 |
+
return f"{timestamp}_{name_without_ext}_{content_hash}"
|
| 207 |
+
|
| 208 |
+
def process_document(file_content: bytes, filename: str) -> IngestResponse:
|
| 209 |
+
"""Main document processing function"""
|
| 210 |
+
start_time = datetime.now()
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
# Generate document ID
|
| 214 |
+
doc_id = generate_doc_id(filename, file_content)
|
| 215 |
+
|
| 216 |
+
# Save uploaded file temporarily
|
| 217 |
+
file_extension = os.path.splitext(filename)[1].lower()
|
| 218 |
+
temp_file_path = UPLOAD_DIR / f"{doc_id}{file_extension}"
|
| 219 |
+
|
| 220 |
+
with open(temp_file_path, 'wb') as f:
|
| 221 |
+
f.write(file_content)
|
| 222 |
+
|
| 223 |
+
# Extract text based on file type
|
| 224 |
+
if file_extension == '.pdf':
|
| 225 |
+
text, extraction_metadata = extract_text_from_pdf(str(temp_file_path))
|
| 226 |
+
elif file_extension == '.docx':
|
| 227 |
+
text, extraction_metadata = extract_text_from_docx(str(temp_file_path))
|
| 228 |
+
else:
|
| 229 |
+
raise ValueError(f"Unsupported file type: {file_extension}")
|
| 230 |
+
|
| 231 |
+
# Clean and chunk text
|
| 232 |
+
chunks = clean_and_chunk_text(text, doc_id)
|
| 233 |
+
|
| 234 |
+
# Store chunks (in production, this would go to vector store)
|
| 235 |
+
DOCUMENT_STORE[doc_id] = chunks
|
| 236 |
+
|
| 237 |
+
# Store metadata
|
| 238 |
+
processing_time = (datetime.now() - start_time).total_seconds()
|
| 239 |
+
DOCUMENT_METADATA[doc_id] = {
|
| 240 |
+
"filename": filename,
|
| 241 |
+
"doc_id": doc_id,
|
| 242 |
+
"file_type": file_extension,
|
| 243 |
+
"processing_time": processing_time,
|
| 244 |
+
"total_text_length": len(text),
|
| 245 |
+
"chunks_count": len(chunks),
|
| 246 |
+
"extraction_metadata": extraction_metadata,
|
| 247 |
+
"processed_at": datetime.now().isoformat(),
|
| 248 |
+
"status": "ready"
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
# Clean up temporary file
|
| 252 |
+
temp_file_path.unlink()
|
| 253 |
+
|
| 254 |
+
# Save processed document
|
| 255 |
+
processed_file_path = PROCESSED_DIR / f"{doc_id}.json"
|
| 256 |
+
with open(processed_file_path, 'w') as f:
|
| 257 |
+
json.dump({
|
| 258 |
+
"metadata": DOCUMENT_METADATA[doc_id],
|
| 259 |
+
"chunks": [chunk.dict() for chunk in chunks]
|
| 260 |
+
}, f, indent=2)
|
| 261 |
+
|
| 262 |
+
logger.info(f"Successfully processed document {doc_id}: {len(chunks)} chunks")
|
| 263 |
+
|
| 264 |
+
return IngestResponse(
|
| 265 |
+
doc_id=doc_id,
|
| 266 |
+
chunks_indexed=len(chunks),
|
| 267 |
+
status="ready",
|
| 268 |
+
metadata=DOCUMENT_METADATA[doc_id]
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
except Exception as e:
|
| 272 |
+
logger.error(f"Document processing failed: {str(e)}")
|
| 273 |
+
raise HTTPException(status_code=500, detail=f"Processing failed: {str(e)}")
|
| 274 |
+
|
| 275 |
+
def get_document_context(doc_id: str, max_chunks: int = 10) -> str:
|
| 276 |
+
"""Retrieve document context for a given doc_id"""
|
| 277 |
+
if doc_id not in DOCUMENT_STORE:
|
| 278 |
+
return f"Document {doc_id} not found."
|
| 279 |
+
|
| 280 |
+
chunks = DOCUMENT_STORE[doc_id][:max_chunks]
|
| 281 |
+
context_parts = []
|
| 282 |
+
|
| 283 |
+
for chunk in chunks:
|
| 284 |
+
context_parts.append(f"[Chunk {chunk.metadata['chunk_index']}]: {chunk.content}")
|
| 285 |
+
|
| 286 |
+
return "\n\n".join(context_parts)
|
| 287 |
+
|
| 288 |
+
# Gradio functions
|
| 289 |
+
def gradio_upload_and_process(file):
|
| 290 |
+
"""Process uploaded file through Gradio"""
|
| 291 |
+
if file is None:
|
| 292 |
+
return "No file uploaded", "", ""
|
| 293 |
+
|
| 294 |
+
try:
|
| 295 |
+
with open(file.name, 'rb') as f:
|
| 296 |
+
file_content = f.read()
|
| 297 |
+
|
| 298 |
+
filename = os.path.basename(file.name)
|
| 299 |
+
result = process_document(file_content, filename)
|
| 300 |
+
|
| 301 |
+
# Format response for Gradio
|
| 302 |
+
response_text = f"""
|
| 303 |
+
β
Document processed successfully!
|
| 304 |
+
|
| 305 |
+
π Document ID: {result.doc_id}
|
| 306 |
+
π Chunks created: {result.chunks_indexed}
|
| 307 |
+
β±οΈ Processing time: {result.metadata['processing_time']:.2f}s
|
| 308 |
+
π Total text length: {result.metadata['total_text_length']} characters
|
| 309 |
+
π File type: {result.metadata['file_type']}
|
| 310 |
+
|
| 311 |
+
Status: {result.status}
|
| 312 |
+
"""
|
| 313 |
+
|
| 314 |
+
# Get the processed chunks for display
|
| 315 |
+
chunks = DOCUMENT_STORE.get(result.doc_id, [])
|
| 316 |
+
chunks_display = ""
|
| 317 |
+
if chunks:
|
| 318 |
+
chunks_display = "π Processed Chunks:\n\n"
|
| 319 |
+
for i, chunk in enumerate(chunks[:10]): # Show first 10 chunks
|
| 320 |
+
chunks_display += f"--- Chunk {i+1} ---\n"
|
| 321 |
+
chunks_display += f"Length: {len(chunk.content)} characters\n"
|
| 322 |
+
chunks_display += f"Content: {chunk.content[:200]}{'...' if len(chunk.content) > 200 else ''}\n\n"
|
| 323 |
+
|
| 324 |
+
if len(chunks) > 10:
|
| 325 |
+
chunks_display += f"... and {len(chunks) - 10} more chunks\n"
|
| 326 |
+
|
| 327 |
+
return response_text, result.doc_id, chunks_display
|
| 328 |
+
|
| 329 |
+
except Exception as e:
|
| 330 |
+
error_msg = f"β Error processing document: {str(e)}"
|
| 331 |
+
logger.error(error_msg)
|
| 332 |
+
return error_msg, "", ""
|
| 333 |
+
|
| 334 |
+
def gradio_get_context(doc_id: str, max_chunks: int = 5):
|
| 335 |
+
"""Get document context through Gradio"""
|
| 336 |
+
if not doc_id.strip():
|
| 337 |
+
return "Please enter a document ID"
|
| 338 |
+
|
| 339 |
+
try:
|
| 340 |
+
context = get_document_context(doc_id.strip(), max_chunks)
|
| 341 |
+
return f"π Context for document '{doc_id}':\n\n{context}"
|
| 342 |
+
except Exception as e:
|
| 343 |
+
return f"β Error retrieving context: {str(e)}"
|
| 344 |
+
|
| 345 |
+
def list_documents():
|
| 346 |
+
"""List all processed documents"""
|
| 347 |
+
if not DOCUMENT_METADATA:
|
| 348 |
+
return "No documents processed yet."
|
| 349 |
+
|
| 350 |
+
doc_list = []
|
| 351 |
+
for doc_id, metadata in DOCUMENT_METADATA.items():
|
| 352 |
+
doc_list.append(f"β’ {doc_id} ({metadata['filename']}) - {metadata['chunks_count']} chunks")
|
| 353 |
+
|
| 354 |
+
return "π Processed Documents:\n\n" + "\n".join(doc_list)
|
| 355 |
+
|
| 356 |
+
# Create Gradio interface
|
| 357 |
+
def create_gradio_interface():
|
| 358 |
+
with gr.Blocks(title="ChatFed Document Ingestion", theme=gr.themes.Soft()) as demo:
|
| 359 |
+
gr.Markdown("# π ChatFed Document Ingestion Module")
|
| 360 |
+
gr.Markdown("Upload PDF or DOCX files to make them available for retrieval.")
|
| 361 |
+
|
| 362 |
+
with gr.Tab("π€ Upload Document"):
|
| 363 |
+
with gr.Row():
|
| 364 |
+
with gr.Column():
|
| 365 |
+
file_input = gr.File(
|
| 366 |
+
label="Upload PDF or DOCX file",
|
| 367 |
+
file_types=[".pdf", ".docx"]
|
| 368 |
+
)
|
| 369 |
+
process_btn = gr.Button("π Process Document", variant="primary")
|
| 370 |
+
|
| 371 |
+
with gr.Column():
|
| 372 |
+
result_output = gr.Textbox(
|
| 373 |
+
label="Processing Result",
|
| 374 |
+
lines=8,
|
| 375 |
+
interactive=False
|
| 376 |
+
)
|
| 377 |
+
doc_id_output = gr.Textbox(
|
| 378 |
+
label="Document ID",
|
| 379 |
+
interactive=False
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# Add a new section for displaying chunks
|
| 383 |
+
with gr.Row():
|
| 384 |
+
chunks_output = gr.Textbox(
|
| 385 |
+
label="Processed Chunks Preview",
|
| 386 |
+
lines=15,
|
| 387 |
+
interactive=False
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
process_btn.click(
|
| 391 |
+
fn=gradio_upload_and_process,
|
| 392 |
+
inputs=[file_input],
|
| 393 |
+
outputs=[result_output, doc_id_output, chunks_output]
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
with gr.Tab("π View Document"):
|
| 397 |
+
with gr.Row():
|
| 398 |
+
with gr.Column():
|
| 399 |
+
doc_id_input = gr.Textbox(
|
| 400 |
+
label="Document ID",
|
| 401 |
+
placeholder="Enter document ID to view context..."
|
| 402 |
+
)
|
| 403 |
+
max_chunks_input = gr.Slider(
|
| 404 |
+
label="Max Chunks to Display",
|
| 405 |
+
minimum=1,
|
| 406 |
+
maximum=20,
|
| 407 |
+
value=5,
|
| 408 |
+
step=1
|
| 409 |
+
)
|
| 410 |
+
view_btn = gr.Button("π View Context", variant="secondary")
|
| 411 |
+
|
| 412 |
+
with gr.Column():
|
| 413 |
+
context_output = gr.Textbox(
|
| 414 |
+
label="Document Context",
|
| 415 |
+
lines=15,
|
| 416 |
+
interactive=False
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
view_btn.click(
|
| 420 |
+
fn=gradio_get_context,
|
| 421 |
+
inputs=[doc_id_input, max_chunks_input],
|
| 422 |
+
outputs=[context_output]
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
with gr.Tab("π Document List"):
|
| 426 |
+
with gr.Column():
|
| 427 |
+
refresh_btn = gr.Button("π Refresh List")
|
| 428 |
+
doc_list_output = gr.Textbox(
|
| 429 |
+
label="All Documents",
|
| 430 |
+
lines=10,
|
| 431 |
+
interactive=False
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
refresh_btn.click(
|
| 435 |
+
fn=list_documents,
|
| 436 |
+
inputs=[],
|
| 437 |
+
outputs=[doc_list_output]
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# Load initial list
|
| 441 |
+
demo.load(fn=list_documents, inputs=[], outputs=[doc_list_output])
|
| 442 |
+
|
| 443 |
+
return demo
|
| 444 |
+
|
| 445 |
+
# FastAPI setup
|
| 446 |
+
@asynccontextmanager
|
| 447 |
+
async def lifespan(app: FastAPI):
|
| 448 |
+
logger.info("Document Ingestion Module starting up...")
|
| 449 |
+
yield
|
| 450 |
+
logger.info("Document Ingestion Module shutting down...")
|
| 451 |
+
|
| 452 |
+
app = FastAPI(
|
| 453 |
+
title="ChatFed Document Ingestion",
|
| 454 |
+
version="1.0.0",
|
| 455 |
+
lifespan=lifespan
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
@app.get("/health")
|
| 459 |
+
async def health_check():
|
| 460 |
+
return {"status": "healthy", "documents_processed": len(DOCUMENT_METADATA)}
|
| 461 |
+
|
| 462 |
+
@app.get("/")
|
| 463 |
+
async def root():
|
| 464 |
+
return {
|
| 465 |
+
"message": "ChatFed Document Ingestion API",
|
| 466 |
+
"endpoints": {
|
| 467 |
+
"health": "/health",
|
| 468 |
+
"ingest": "/ingest",
|
| 469 |
+
"context": "/context/{doc_id}",
|
| 470 |
+
"documents": "/documents"
|
| 471 |
+
}
|
| 472 |
+
}
|
| 473 |
+
|
| 474 |
+
@app.post("/ingest")
|
| 475 |
+
async def ingest_endpoint(file: UploadFile = File(...)):
|
| 476 |
+
"""Ingest a document file"""
|
| 477 |
+
try:
|
| 478 |
+
file_content = await file.read()
|
| 479 |
+
result = process_document(file_content, file.filename)
|
| 480 |
+
return result
|
| 481 |
+
except Exception as e:
|
| 482 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 483 |
+
|
| 484 |
+
@app.get("/context/{doc_id}")
|
| 485 |
+
async def get_context_endpoint(doc_id: str, max_chunks: int = 10):
|
| 486 |
+
"""Get context for a specific document"""
|
| 487 |
+
try:
|
| 488 |
+
context = get_document_context(doc_id, max_chunks)
|
| 489 |
+
return {
|
| 490 |
+
"doc_id": doc_id,
|
| 491 |
+
"context": context,
|
| 492 |
+
"metadata": DOCUMENT_METADATA.get(doc_id, {})
|
| 493 |
+
}
|
| 494 |
+
except Exception as e:
|
| 495 |
+
raise HTTPException(status_code=404, detail=str(e))
|
| 496 |
+
|
| 497 |
+
@app.get("/documents")
|
| 498 |
+
async def list_documents_endpoint():
|
| 499 |
+
"""List all processed documents"""
|
| 500 |
+
return {
|
| 501 |
+
"documents": list(DOCUMENT_METADATA.keys()),
|
| 502 |
+
"metadata": DOCUMENT_METADATA
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
# Add a simple API endpoint for the orchestrator to call
|
| 506 |
+
@app.post("/context")
|
| 507 |
+
async def get_context_simple(doc_id: str, max_chunks: int = 10):
|
| 508 |
+
"""Simple context endpoint for orchestrator integration"""
|
| 509 |
+
try:
|
| 510 |
+
context = get_document_context(doc_id, max_chunks)
|
| 511 |
+
return {"context": context}
|
| 512 |
+
except Exception as e:
|
| 513 |
+
raise HTTPException(status_code=404, detail=str(e))
|
| 514 |
+
|
| 515 |
+
if __name__ == "__main__":
|
| 516 |
+
# Create and launch Gradio interface
|
| 517 |
+
demo = create_gradio_interface()
|
| 518 |
+
|
| 519 |
+
# Run both FastAPI and Gradio
|
| 520 |
+
import threading
|
| 521 |
+
|
| 522 |
+
def run_gradio():
|
| 523 |
+
demo.launch(
|
| 524 |
+
server_name="0.0.0.0",
|
| 525 |
+
server_port=7860,
|
| 526 |
+
show_error=True,
|
| 527 |
+
share=False,
|
| 528 |
+
quiet=True
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
def run_fastapi():
|
| 532 |
+
uvicorn.run(app, host="0.0.0.0", port=7863, log_level="info")
|
| 533 |
+
|
| 534 |
+
# Start Gradio in main thread
|
| 535 |
+
gradio_thread = threading.Thread(target=run_gradio, daemon=True)
|
| 536 |
+
gradio_thread.start()
|
| 537 |
+
|
| 538 |
+
# Start FastAPI in background
|
| 539 |
+
fastapi_thread = threading.Thread(target=run_fastapi, daemon=True)
|
| 540 |
+
fastapi_thread.start()
|
| 541 |
+
|
| 542 |
+
# Keep main thread alive
|
| 543 |
+
try:
|
| 544 |
+
gradio_thread.join()
|
| 545 |
+
except KeyboardInterrupt:
|
| 546 |
+
logger.info("Shutting down...")
|
app/utils.py
ADDED
|
File without changes
|
params.cfg
ADDED
|
File without changes
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
gradio==4.44.0
|
| 4 |
+
pydantic==2.5.2
|
| 5 |
+
python-multipart>=0.0.9
|
| 6 |
+
|
| 7 |
+
# Document processing
|
| 8 |
+
PyPDF2==3.0.1
|
| 9 |
+
python-docx==1.1.0
|
| 10 |
+
|
| 11 |
+
# Utilities
|
| 12 |
+
python-dotenv==1.0.0
|
| 13 |
+
|
| 14 |
+
|