Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Merge branch 'main' into model_size_parameters
Browse files- EXTERNAL_MODEL_RESULTS.json +0 -0
- app.py +40 -1
EXTERNAL_MODEL_RESULTS.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
app.py
CHANGED
@@ -215,6 +215,17 @@ TASK_LIST_RETRIEVAL_FR = [
|
|
215 |
"XPQARetrieval (fr)",
|
216 |
]
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
TASK_LIST_RETRIEVAL_PL = [
|
219 |
"ArguAna-PL",
|
220 |
"DBPedia-PL",
|
@@ -324,6 +335,7 @@ def make_clickable_model(model_name, link=None):
|
|
324 |
# Models without metadata, thus we cannot fetch their results naturally
|
325 |
EXTERNAL_MODELS = [
|
326 |
"Baichuan-text-embedding",
|
|
|
327 |
"Cohere-embed-multilingual-v3.0",
|
328 |
"Cohere-embed-multilingual-light-v3.0",
|
329 |
"DanskBERT",
|
@@ -342,6 +354,7 @@ EXTERNAL_MODELS = [
|
|
342 |
"bert-base-swedish-cased",
|
343 |
"bert-base-uncased",
|
344 |
"bge-base-zh-v1.5",
|
|
|
345 |
"bge-large-zh-v1.5",
|
346 |
"bge-large-zh-noinstruct",
|
347 |
"bge-small-zh-v1.5",
|
@@ -364,6 +377,8 @@ EXTERNAL_MODELS = [
|
|
364 |
"gelectra-base",
|
365 |
"gelectra-large",
|
366 |
"glove.6B.300d",
|
|
|
|
|
367 |
"gottbert-base",
|
368 |
"gtr-t5-base",
|
369 |
"gtr-t5-large",
|
@@ -434,6 +449,7 @@ EXTERNAL_MODELS = [
|
|
434 |
]
|
435 |
|
436 |
EXTERNAL_MODEL_TO_LINK = {
|
|
|
437 |
"Cohere-embed-multilingual-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0",
|
438 |
"Cohere-embed-multilingual-light-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-light-v3.0",
|
439 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
@@ -450,6 +466,7 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
450 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
451 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
452 |
"bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
|
|
453 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
454 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
455 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
@@ -480,6 +497,8 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
480 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
481 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
482 |
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
|
|
|
|
|
483 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
484 |
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
485 |
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
@@ -553,6 +572,7 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
553 |
}
|
554 |
|
555 |
EXTERNAL_MODEL_TO_DIM = {
|
|
|
556 |
"Cohere-embed-multilingual-v3.0": 1024,
|
557 |
"Cohere-embed-multilingual-light-v3.0": 384,
|
558 |
"all-MiniLM-L12-v2": 384,
|
@@ -568,6 +588,7 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
568 |
"bert-base-swedish-cased": 768,
|
569 |
"bert-base-uncased": 768,
|
570 |
"bge-base-zh-v1.5": 768,
|
|
|
571 |
"bge-large-zh-v1.5": 1024,
|
572 |
"bge-large-zh-noinstruct": 1024,
|
573 |
"bge-small-zh-v1.5": 512,
|
@@ -601,6 +622,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
601 |
"gelectra-base": 768,
|
602 |
"gelectra-large": 1024,
|
603 |
"glove.6B.300d": 300,
|
|
|
|
|
604 |
"gottbert-base": 768,
|
605 |
"gtr-t5-base": 768,
|
606 |
"gtr-t5-large": 768,
|
@@ -671,6 +694,7 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
671 |
}
|
672 |
|
673 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
|
|
674 |
"Cohere-embed-multilingual-v3.0": 512,
|
675 |
"Cohere-embed-multilingual-light-v3.0": 512,
|
676 |
"all-MiniLM-L12-v2": 512,
|
@@ -686,6 +710,7 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
686 |
"bert-base-swedish-cased": 512,
|
687 |
"bert-base-uncased": 512,
|
688 |
"bge-base-zh-v1.5": 512,
|
|
|
689 |
"bge-large-zh-v1.5": 512,
|
690 |
"bge-large-zh-noinstruct": 512,
|
691 |
"bge-small-zh-v1.5": 512,
|
@@ -715,6 +740,8 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
715 |
"gbert-large": 512,
|
716 |
"gelectra-base": 512,
|
717 |
"gelectra-large": 512,
|
|
|
|
|
718 |
"gottbert-base": 512,
|
719 |
"glove.6B.300d": "N/A",
|
720 |
"gtr-t5-base": 512,
|
@@ -904,6 +931,8 @@ PROPRIETARY_MODELS = {
|
|
904 |
"voyage-code-2",
|
905 |
"voyage-lite-01-instruct",
|
906 |
"voyage-lite-02-instruct",
|
|
|
|
|
907 |
}
|
908 |
PROPRIETARY_MODELS = {
|
909 |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))
|
@@ -1151,7 +1180,7 @@ def add_task(examples):
|
|
1151 |
examples["mteb_task"] = "PairClassification"
|
1152 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RERANKING + TASK_LIST_RERANKING_FR + TASK_LIST_RERANKING_ZH):
|
1153 |
examples["mteb_task"] = "Reranking"
|
1154 |
-
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_FR + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH):
|
1155 |
examples["mteb_task"] = "Retrieval"
|
1156 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_STS + TASK_LIST_STS_FR + TASK_LIST_STS_PL + TASK_LIST_STS_ZH):
|
1157 |
examples["mteb_task"] = "STS"
|
@@ -1569,6 +1598,7 @@ DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIF
|
|
1569 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLASSIFICATION_OTHER]
|
1570 |
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLUSTERING_DE]
|
1571 |
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_STS_OTHER]
|
|
|
1572 |
|
1573 |
# Exact, add all non-nan integer values for every dataset
|
1574 |
NUM_SCORES = 0
|
@@ -1602,6 +1632,7 @@ for d in [
|
|
1602 |
DATA_RETRIEVAL_FR,
|
1603 |
DATA_RETRIEVAL_PL,
|
1604 |
DATA_RETRIEVAL_ZH,
|
|
|
1605 |
DATA_STS_EN,
|
1606 |
DATA_STS_FR,
|
1607 |
DATA_STS_PL,
|
@@ -1893,6 +1924,14 @@ data = {
|
|
1893 |
"data": DATA_RETRIEVAL_FR,
|
1894 |
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR)
|
1895 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1896 |
{
|
1897 |
"language": "Polish",
|
1898 |
"description": "**Retrieval Polish Leaderboard** ππ΅π±",
|
|
|
215 |
"XPQARetrieval (fr)",
|
216 |
]
|
217 |
|
218 |
+
TASK_LIST_RETRIEVAL_LAW = [
|
219 |
+
"AILACasedocs",
|
220 |
+
"AILAStatutes",
|
221 |
+
"GerDaLIRSmall",
|
222 |
+
"LeCaRDv2",
|
223 |
+
"LegalBenchConsumerContractsQA",
|
224 |
+
"LegalBenchCorporateLobbying",
|
225 |
+
"LegalQuAD",
|
226 |
+
"LegalSummarization",
|
227 |
+
]
|
228 |
+
|
229 |
TASK_LIST_RETRIEVAL_PL = [
|
230 |
"ArguAna-PL",
|
231 |
"DBPedia-PL",
|
|
|
335 |
# Models without metadata, thus we cannot fetch their results naturally
|
336 |
EXTERNAL_MODELS = [
|
337 |
"Baichuan-text-embedding",
|
338 |
+
"Cohere-embed-english-v3.0",
|
339 |
"Cohere-embed-multilingual-v3.0",
|
340 |
"Cohere-embed-multilingual-light-v3.0",
|
341 |
"DanskBERT",
|
|
|
354 |
"bert-base-swedish-cased",
|
355 |
"bert-base-uncased",
|
356 |
"bge-base-zh-v1.5",
|
357 |
+
"bge-large-en-v1.5",
|
358 |
"bge-large-zh-v1.5",
|
359 |
"bge-large-zh-noinstruct",
|
360 |
"bge-small-zh-v1.5",
|
|
|
377 |
"gelectra-base",
|
378 |
"gelectra-large",
|
379 |
"glove.6B.300d",
|
380 |
+
"google-gecko.text-embedding-preview-0409",
|
381 |
+
"google-gecko-256.text-embedding-preview-0409",
|
382 |
"gottbert-base",
|
383 |
"gtr-t5-base",
|
384 |
"gtr-t5-large",
|
|
|
449 |
]
|
450 |
|
451 |
EXTERNAL_MODEL_TO_LINK = {
|
452 |
+
"Cohere-embed-english-v3.0": "https://huggingface.co/Cohere/Cohere-embed-english-v3.0",
|
453 |
"Cohere-embed-multilingual-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0",
|
454 |
"Cohere-embed-multilingual-light-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-light-v3.0",
|
455 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
|
|
466 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
467 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
468 |
"bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
469 |
+
"bge-large-en-v1.5": "https://huggingface.co/BAAI/bge-large-en-v1.5",
|
470 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
471 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
472 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
|
497 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
498 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
499 |
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
|
500 |
+
"google-gecko.text-embedding-preview-0409": "https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings#latest_models",
|
501 |
+
"google-gecko-256.text-embedding-preview-0409": "https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings#latest_models",
|
502 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
503 |
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
504 |
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
|
|
572 |
}
|
573 |
|
574 |
EXTERNAL_MODEL_TO_DIM = {
|
575 |
+
"Cohere-embed-english-v3.0": 1024,
|
576 |
"Cohere-embed-multilingual-v3.0": 1024,
|
577 |
"Cohere-embed-multilingual-light-v3.0": 384,
|
578 |
"all-MiniLM-L12-v2": 384,
|
|
|
588 |
"bert-base-swedish-cased": 768,
|
589 |
"bert-base-uncased": 768,
|
590 |
"bge-base-zh-v1.5": 768,
|
591 |
+
"bge-large-en-v1.5": 1024,
|
592 |
"bge-large-zh-v1.5": 1024,
|
593 |
"bge-large-zh-noinstruct": 1024,
|
594 |
"bge-small-zh-v1.5": 512,
|
|
|
622 |
"gelectra-base": 768,
|
623 |
"gelectra-large": 1024,
|
624 |
"glove.6B.300d": 300,
|
625 |
+
"google-gecko.text-embedding-preview-0409": 768,
|
626 |
+
"google-gecko-256.text-embedding-preview-0409": 256,
|
627 |
"gottbert-base": 768,
|
628 |
"gtr-t5-base": 768,
|
629 |
"gtr-t5-large": 768,
|
|
|
694 |
}
|
695 |
|
696 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
697 |
+
"Cohere-embed-english-v3.0": 512,
|
698 |
"Cohere-embed-multilingual-v3.0": 512,
|
699 |
"Cohere-embed-multilingual-light-v3.0": 512,
|
700 |
"all-MiniLM-L12-v2": 512,
|
|
|
710 |
"bert-base-swedish-cased": 512,
|
711 |
"bert-base-uncased": 512,
|
712 |
"bge-base-zh-v1.5": 512,
|
713 |
+
"bge-large-en-v1.5": 512,
|
714 |
"bge-large-zh-v1.5": 512,
|
715 |
"bge-large-zh-noinstruct": 512,
|
716 |
"bge-small-zh-v1.5": 512,
|
|
|
740 |
"gbert-large": 512,
|
741 |
"gelectra-base": 512,
|
742 |
"gelectra-large": 512,
|
743 |
+
"google-gecko.text-embedding-preview-0409": 2048,
|
744 |
+
"google-gecko-256.text-embedding-preview-0409": 2048,
|
745 |
"gottbert-base": 512,
|
746 |
"glove.6B.300d": "N/A",
|
747 |
"gtr-t5-base": 512,
|
|
|
931 |
"voyage-code-2",
|
932 |
"voyage-lite-01-instruct",
|
933 |
"voyage-lite-02-instruct",
|
934 |
+
"google-gecko.text-embedding-preview-0409",
|
935 |
+
"google-gecko-256.text-embedding-preview-0409",
|
936 |
}
|
937 |
PROPRIETARY_MODELS = {
|
938 |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))
|
|
|
1180 |
examples["mteb_task"] = "PairClassification"
|
1181 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RERANKING + TASK_LIST_RERANKING_FR + TASK_LIST_RERANKING_ZH):
|
1182 |
examples["mteb_task"] = "Reranking"
|
1183 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_FR + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_RETRIEVAL_LAW):
|
1184 |
examples["mteb_task"] = "Retrieval"
|
1185 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_STS + TASK_LIST_STS_FR + TASK_LIST_STS_PL + TASK_LIST_STS_ZH):
|
1186 |
examples["mteb_task"] = "STS"
|
|
|
1598 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLASSIFICATION_OTHER]
|
1599 |
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLUSTERING_DE]
|
1600 |
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_STS_OTHER]
|
1601 |
+
DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_RETRIEVAL_LAW]
|
1602 |
|
1603 |
# Exact, add all non-nan integer values for every dataset
|
1604 |
NUM_SCORES = 0
|
|
|
1632 |
DATA_RETRIEVAL_FR,
|
1633 |
DATA_RETRIEVAL_PL,
|
1634 |
DATA_RETRIEVAL_ZH,
|
1635 |
+
DATA_RETRIEVAL_LAW,
|
1636 |
DATA_STS_EN,
|
1637 |
DATA_STS_FR,
|
1638 |
DATA_STS_PL,
|
|
|
1924 |
"data": DATA_RETRIEVAL_FR,
|
1925 |
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR)
|
1926 |
},
|
1927 |
+
{
|
1928 |
+
"language": "Law",
|
1929 |
+
"language_long": "English, German, Chinese",
|
1930 |
+
"description": "**Retrieval Law Leaderboard** πβοΈ",
|
1931 |
+
"credits": "[Voyage AI](https://www.voyageai.com/)",
|
1932 |
+
"data": DATA_RETRIEVAL_LAW,
|
1933 |
+
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_LAW)
|
1934 |
+
},
|
1935 |
{
|
1936 |
"language": "Polish",
|
1937 |
"description": "**Retrieval Polish Leaderboard** ππ΅π±",
|