Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
orionweller
commited on
Commit
·
0d0563c
1
Parent(s):
cf7ddc6
update
Browse files
app.py
CHANGED
@@ -331,6 +331,19 @@ TASK_TO_METRIC = {
|
|
331 |
"InstructionRetrieval": "p-MRR",
|
332 |
}
|
333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
def make_clickable_model(model_name, link=None):
|
335 |
if link is None:
|
336 |
link = "https://huggingface.co/" + model_name
|
@@ -1170,6 +1183,15 @@ SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
|
|
1170 |
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
|
1171 |
}
|
1172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1173 |
MODELS_TO_SKIP = {
|
1174 |
"baseplate/instructor-large-1", # Duplicate
|
1175 |
"radames/e5-large", # Duplicate
|
@@ -1493,7 +1515,7 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
1493 |
df = pd.DataFrame(df_list)
|
1494 |
# If there are any models that are the same, merge them
|
1495 |
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1496 |
-
df = df.groupby("Model", as_index=False).first()
|
1497 |
# Put 'Model' column first
|
1498 |
cols = sorted(list(df.columns))
|
1499 |
cols.insert(0, cols.pop(cols.index("Model")))
|
@@ -1502,6 +1524,9 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
1502 |
df = add_rank(df)
|
1503 |
if fillna:
|
1504 |
df.fillna("", inplace=True)
|
|
|
|
|
|
|
1505 |
return df
|
1506 |
|
1507 |
def get_mteb_average():
|
@@ -2196,7 +2221,7 @@ function(goalUrlObject) {
|
|
2196 |
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
|
2197 |
current_task_language["task"] = event.target.id
|
2198 |
# Either use the cached language for this task or the 1st language
|
2199 |
-
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[
|
2200 |
return current_task_language, language_per_task
|
2201 |
|
2202 |
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
|
@@ -2300,7 +2325,7 @@ with gr.Blocks(css=css) as block:
|
|
2300 |
with gr.Tab(task, id=task_tab_id) as task_tab:
|
2301 |
# For updating the 'task' in the URL
|
2302 |
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
|
2303 |
-
|
2304 |
with gr.Tabs() as task_tabs:
|
2305 |
# Store the task tabs for updating them on load based on URL parameters
|
2306 |
tabs.append(task_tabs)
|
|
|
331 |
"InstructionRetrieval": "p-MRR",
|
332 |
}
|
333 |
|
334 |
+
TASK_DESCRIPTION = {
|
335 |
+
"Bitext Mining": "Bitext mining is the task of finding parallel sentences in two languages.",
|
336 |
+
"Clustering": "Clustering is the task of grouping similar documents together.",
|
337 |
+
"Classification": "Classification is the task of assigning a label to a text.",
|
338 |
+
"Pair Classification": "Pair classification is the task of determining whether two texts are similar.",
|
339 |
+
"Reranking": "Reranking is the task of reordering a list of documents to improve relevance.",
|
340 |
+
"Retrieval": "Retrieval is the task of finding relevant documents for a query.",
|
341 |
+
"STS": "Semantic Textual Similarity is the task of determining how similar two texts are.",
|
342 |
+
"Summarization": "Summarization is the task of generating a summary of a text.",
|
343 |
+
"Retrieval w/Instructions": "Retrieval w/Instructions is the task of finding relevant documents for a query that has detailed instructions.",
|
344 |
+
"Overall": "Overall performance across MTEB tasks.",
|
345 |
+
}
|
346 |
+
|
347 |
def make_clickable_model(model_name, link=None):
|
348 |
if link is None:
|
349 |
link = "https://huggingface.co/" + model_name
|
|
|
1183 |
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
|
1184 |
}
|
1185 |
|
1186 |
+
CROSS_ENCODERS = {
|
1187 |
+
"FollowIR-7B",
|
1188 |
+
"flan-t5-base",
|
1189 |
+
"flan-t5-large",
|
1190 |
+
"monobert-large-msmarco",
|
1191 |
+
"monot5-3b-msmarco-10k",
|
1192 |
+
"monot5-base-msmarco-10k",
|
1193 |
+
}
|
1194 |
+
|
1195 |
MODELS_TO_SKIP = {
|
1196 |
"baseplate/instructor-large-1", # Duplicate
|
1197 |
"radames/e5-large", # Duplicate
|
|
|
1515 |
df = pd.DataFrame(df_list)
|
1516 |
# If there are any models that are the same, merge them
|
1517 |
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1518 |
+
df = df.groupby("Model", as_index=False).first()
|
1519 |
# Put 'Model' column first
|
1520 |
cols = sorted(list(df.columns))
|
1521 |
cols.insert(0, cols.pop(cols.index("Model")))
|
|
|
1524 |
df = add_rank(df)
|
1525 |
if fillna:
|
1526 |
df.fillna("", inplace=True)
|
1527 |
+
|
1528 |
+
if "instruction" in task.lower():
|
1529 |
+
df["Model"] = df.Model.apply(lambda x: "❎" + x if x.split(">")[1].split("<")[0] in CROSS_ENCODERS else x)
|
1530 |
return df
|
1531 |
|
1532 |
def get_mteb_average():
|
|
|
2221 |
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
|
2222 |
current_task_language["task"] = event.target.id
|
2223 |
# Either use the cached language for this task or the 1st language
|
2224 |
+
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id)
|
2225 |
return current_task_language, language_per_task
|
2226 |
|
2227 |
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
|
|
|
2325 |
with gr.Tab(task, id=task_tab_id) as task_tab:
|
2326 |
# For updating the 'task' in the URL
|
2327 |
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
|
2328 |
+
gr.Markdown(TASK_DESCRIPTION[task])
|
2329 |
with gr.Tabs() as task_tabs:
|
2330 |
# Store the task tabs for updating them on load based on URL parameters
|
2331 |
tabs.append(task_tabs)
|