orionweller commited on
Commit
0d0563c
·
1 Parent(s): cf7ddc6
Files changed (1) hide show
  1. app.py +28 -3
app.py CHANGED
@@ -331,6 +331,19 @@ TASK_TO_METRIC = {
331
  "InstructionRetrieval": "p-MRR",
332
  }
333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
  def make_clickable_model(model_name, link=None):
335
  if link is None:
336
  link = "https://huggingface.co/" + model_name
@@ -1170,6 +1183,15 @@ SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
1170
  for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
1171
  }
1172
 
 
 
 
 
 
 
 
 
 
1173
  MODELS_TO_SKIP = {
1174
  "baseplate/instructor-large-1", # Duplicate
1175
  "radames/e5-large", # Duplicate
@@ -1493,7 +1515,7 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
1493
  df = pd.DataFrame(df_list)
1494
  # If there are any models that are the same, merge them
1495
  # E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
1496
- df = df.groupby("Model", as_index=False).first()
1497
  # Put 'Model' column first
1498
  cols = sorted(list(df.columns))
1499
  cols.insert(0, cols.pop(cols.index("Model")))
@@ -1502,6 +1524,9 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
1502
  df = add_rank(df)
1503
  if fillna:
1504
  df.fillna("", inplace=True)
 
 
 
1505
  return df
1506
 
1507
  def get_mteb_average():
@@ -2196,7 +2221,7 @@ function(goalUrlObject) {
2196
  def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
2197
  current_task_language["task"] = event.target.id
2198
  # Either use the cached language for this task or the 1st language
2199
- current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id)
2200
  return current_task_language, language_per_task
2201
 
2202
  def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
@@ -2300,7 +2325,7 @@ with gr.Blocks(css=css) as block:
2300
  with gr.Tab(task, id=task_tab_id) as task_tab:
2301
  # For updating the 'task' in the URL
2302
  task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
2303
-
2304
  with gr.Tabs() as task_tabs:
2305
  # Store the task tabs for updating them on load based on URL parameters
2306
  tabs.append(task_tabs)
 
331
  "InstructionRetrieval": "p-MRR",
332
  }
333
 
334
+ TASK_DESCRIPTION = {
335
+ "Bitext Mining": "Bitext mining is the task of finding parallel sentences in two languages.",
336
+ "Clustering": "Clustering is the task of grouping similar documents together.",
337
+ "Classification": "Classification is the task of assigning a label to a text.",
338
+ "Pair Classification": "Pair classification is the task of determining whether two texts are similar.",
339
+ "Reranking": "Reranking is the task of reordering a list of documents to improve relevance.",
340
+ "Retrieval": "Retrieval is the task of finding relevant documents for a query.",
341
+ "STS": "Semantic Textual Similarity is the task of determining how similar two texts are.",
342
+ "Summarization": "Summarization is the task of generating a summary of a text.",
343
+ "Retrieval w/Instructions": "Retrieval w/Instructions is the task of finding relevant documents for a query that has detailed instructions.",
344
+ "Overall": "Overall performance across MTEB tasks.",
345
+ }
346
+
347
  def make_clickable_model(model_name, link=None):
348
  if link is None:
349
  link = "https://huggingface.co/" + model_name
 
1183
  for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
1184
  }
1185
 
1186
+ CROSS_ENCODERS = {
1187
+ "FollowIR-7B",
1188
+ "flan-t5-base",
1189
+ "flan-t5-large",
1190
+ "monobert-large-msmarco",
1191
+ "monot5-3b-msmarco-10k",
1192
+ "monot5-base-msmarco-10k",
1193
+ }
1194
+
1195
  MODELS_TO_SKIP = {
1196
  "baseplate/instructor-large-1", # Duplicate
1197
  "radames/e5-large", # Duplicate
 
1515
  df = pd.DataFrame(df_list)
1516
  # If there are any models that are the same, merge them
1517
  # E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
1518
+ df = df.groupby("Model", as_index=False).first()
1519
  # Put 'Model' column first
1520
  cols = sorted(list(df.columns))
1521
  cols.insert(0, cols.pop(cols.index("Model")))
 
1524
  df = add_rank(df)
1525
  if fillna:
1526
  df.fillna("", inplace=True)
1527
+
1528
+ if "instruction" in task.lower():
1529
+ df["Model"] = df.Model.apply(lambda x: "❎" + x if x.split(">")[1].split("<")[0] in CROSS_ENCODERS else x)
1530
  return df
1531
 
1532
  def get_mteb_average():
 
2221
  def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
2222
  current_task_language["task"] = event.target.id
2223
  # Either use the cached language for this task or the 1st language
2224
+ current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id)
2225
  return current_task_language, language_per_task
2226
 
2227
  def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
 
2325
  with gr.Tab(task, id=task_tab_id) as task_tab:
2326
  # For updating the 'task' in the URL
2327
  task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
2328
+ gr.Markdown(TASK_DESCRIPTION[task])
2329
  with gr.Tabs() as task_tabs:
2330
  # Store the task tabs for updating them on load based on URL parameters
2331
  tabs.append(task_tabs)