Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import re | |
import traceback | |
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata, model_info as get_model_info, get_hf_file_metadata, hf_hub_url | |
from huggingface_hub import hf_hub_download | |
# Map model IDs to the number of bytes used for one parameter. So, 4 bytes for fp32, 2 bytes for fp16, etc. | |
# By default, we assume that the model is stored in fp32. | |
KNOWN_BYTES_PER_PARAM = { | |
"dwzhu/e5-base-4k": 2, | |
} | |
def get_model_parameters_memory(model_info: ModelInfo): | |
'''Get the size of the model in million of parameters.''' | |
try: | |
safetensors = get_safetensors_metadata(model_info.id) | |
except Exception as e: | |
pass | |
else: | |
num_parameters = sum(safetensors.parameter_count.values()) | |
return round(num_parameters / 1e6), round(num_parameters * 4 / 1024**3, 2) | |
filenames = [sib.rfilename for sib in model_info.siblings] | |
if "pytorch_model.bin" in filenames: | |
url = hf_hub_url(model_info.id, filename="pytorch_model.bin") | |
meta = get_hf_file_metadata(url) | |
bytes_per_param = KNOWN_BYTES_PER_PARAM.get(model_info.id, 4) | |
num_params = round(meta.size / bytes_per_param / 1e6) | |
size_gb = round(meta.size * (4 / bytes_per_param) / 1024**3, 2) | |
return num_params, size_gb | |
if "pytorch_model.bin.index.json" in filenames: | |
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json") | |
""" | |
{ | |
"metadata": { | |
"total_size": 28272820224 | |
},.... | |
""" | |
size = json.load(open(index_path)) | |
bytes_per_param = KNOWN_BYTES_PER_PARAM.get(model_info.id, 4) | |
if ("metadata" in size) and ("total_size" in size["metadata"]): | |
return round(size["metadata"]["total_size"] / bytes_per_param / 1e6), round(size["metadata"]["total_size"] / 1024**3, 2) | |
raise Exception(f"Could not find the model parameters for {model_info.id}") | |