Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from __future__ import annotations | |
import json | |
import os | |
import re | |
from functools import reduce | |
from typing import Any | |
import pandas as pd | |
from datasets import load_dataset | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
from tqdm.autonotebook import tqdm | |
from envs import API, LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO | |
from utils.model_size import get_model_parameters_memory | |
MODEL_CACHE = {} | |
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"] | |
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"] | |
TASKS = list(TASKS_CONFIG.keys()) | |
PRETTY_NAMES = { | |
"InstructionRetrieval": "Retrieval w/Instructions", | |
"PairClassification": "Pair Classification", | |
"BitextMining": "Bitext Mining", | |
} | |
TASK_TO_METRIC = {k: [v["metric"]] for k, v in TASKS_CONFIG.items()} | |
# Add legacy metric names | |
TASK_TO_METRIC["STS"].append("cos_sim_spearman") | |
TASK_TO_METRIC["STS"].append("cosine_spearman") | |
TASK_TO_METRIC["Summarization"].append("cos_sim_spearman") | |
TASK_TO_METRIC["Summarization"].append("cosine_spearman") | |
TASK_TO_METRIC["PairClassification"].append("cos_sim_ap") | |
TASK_TO_METRIC["PairClassification"].append("cosine_ap") | |
EXTERNAL_MODELS = { | |
k for k, v in MODEL_META["model_meta"].items() if v.get("is_external", False) | |
} | |
EXTERNAL_MODEL_TO_LINK = { | |
k: v["link"] for k, v in MODEL_META["model_meta"].items() if v.get("link", False) | |
} | |
EXTERNAL_MODEL_TO_DIM = { | |
k: v["dim"] for k, v in MODEL_META["model_meta"].items() if v.get("dim", False) | |
} | |
EXTERNAL_MODEL_TO_SEQLEN = { | |
k: v["seq_len"] | |
for k, v in MODEL_META["model_meta"].items() | |
if v.get("seq_len", False) | |
} | |
EXTERNAL_MODEL_TO_SIZE = { | |
k: v["size"] for k, v in MODEL_META["model_meta"].items() if v.get("size", False) | |
} | |
PROPRIETARY_MODELS = { | |
k for k, v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False) | |
} | |
TASK_DESCRIPTIONS = {k: v["task_description"] for k, v in TASKS_CONFIG.items()} | |
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks." | |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = { | |
k | |
for k, v in MODEL_META["model_meta"].items() | |
if v.get("is_sentence_transformers_compatible", False) | |
} | |
MODELS_TO_SKIP = MODEL_META["models_to_skip"] | |
CROSS_ENCODERS = MODEL_META["cross_encoders"] | |
BI_ENCODERS = [ | |
k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"] | |
] | |
INSTRUCT_MODELS = { | |
k for k, v in MODEL_META["model_meta"].items() if v.get("uses_instruct", False) | |
} | |
NOINSTRUCT_MODELS = { | |
k for k, v in MODEL_META["model_meta"].items() if not v.get("uses_instruct", False) | |
} | |
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS} | |
for board_config in BOARDS_CONFIG.values(): | |
for task_category, task_list in board_config["tasks"].items(): | |
TASK_TO_TASK_TYPE[task_category].extend(task_list) | |
## Don't cache this because we want to re-compute every time | |
# model_infos_path = "model_infos.json" | |
MODEL_INFOS = {} | |
# if os.path.exists(model_infos_path): | |
# with open(model_infos_path) as f: | |
# MODEL_INFOS = json.load(f) | |
def add_rank(df: pd.DataFrame) -> pd.DataFrame: | |
cols_to_rank = [ | |
col | |
for col in df.columns | |
if col | |
not in [ | |
"Model", | |
"Model Size (Million Parameters)", | |
"Memory Usage (GB, fp32)", | |
"Embedding Dimensions", | |
"Max Tokens", | |
] | |
] | |
if len(cols_to_rank) == 1: | |
df.sort_values(cols_to_rank[0], ascending=False, inplace=True) | |
else: | |
df.insert( | |
len(df.columns) - len(cols_to_rank), | |
"Average", | |
df[cols_to_rank].mean(axis=1, skipna=False), | |
) | |
df.sort_values("Average", ascending=False, inplace=True) | |
df.insert(0, "Rank", list(range(1, len(df) + 1))) | |
df = df.round(2) | |
# Fill NaN after averaging | |
df.fillna("", inplace=True) | |
return df | |
def make_clickable_model(model_name: str, link: None | str = None) -> str: | |
if link is None: | |
link = "https://huggingface.co/" + model_name | |
# Remove user from model name | |
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>' | |
def add_lang(examples): | |
if not (examples["eval_language"]) or (examples["eval_language"] == "default"): | |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] | |
else: | |
examples["mteb_dataset_name_with_lang"] = ( | |
examples["mteb_dataset_name"] + f' ({examples["eval_language"]})' | |
) | |
return examples | |
def norm(names: list[str]) -> set[str]: | |
return set([name.split()[0] for name in names]) | |
def add_task(examples): | |
# Could be added to the dataset loading script instead | |
task_name = examples["mteb_dataset_name"] | |
task_type = None | |
for task_category, task_list in TASK_TO_TASK_TYPE.items(): | |
if task_name in norm(task_list): | |
task_type = task_category | |
break | |
if task_type is not None: | |
examples["mteb_task"] = task_type | |
else: | |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"]) | |
examples["mteb_task"] = "Unknown" | |
return examples | |
def filter_metric_external(x, task, metrics) -> bool: | |
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks. | |
if x["mteb_dataset_name"] in ["LEMBNeedleRetrieval", "LEMBPasskeyRetrieval"]: | |
return bool(x["mteb_task"] == task and x["metric"] == "ndcg_at_1") | |
else: | |
return bool(x["mteb_task"] == task and x["metric"] in metrics) | |
def filter_metric_fetched(name: str, metric: str, expected_metrics) -> bool: | |
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks. | |
return bool( | |
metric == "ndcg_at_1" | |
if name in ["LEMBNeedleRetrieval", "LEMBPasskeyRetrieval"] | |
else metric in expected_metrics | |
) | |
def get_dim_seq_size(model): | |
siblings = model.siblings or [] | |
filenames = [sib.rfilename for sib in siblings] | |
dim, seq = "", "" | |
for filename in filenames: | |
if re.match("\d+_Pooling/config.json", filename): | |
st_config_path = hf_hub_download(model.modelId, filename=filename) | |
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "") | |
break | |
for filename in filenames: | |
if re.match("\d+_Dense/config.json", filename): | |
st_config_path = hf_hub_download(model.modelId, filename=filename) | |
dim = json.load(open(st_config_path)).get("out_features", dim) | |
if "config.json" in filenames: | |
config_path = hf_hub_download(model.modelId, filename="config.json") | |
config = json.load(open(config_path)) | |
if not dim: | |
dim = config.get( | |
"hidden_dim", config.get("hidden_size", config.get("d_model", "")) | |
) | |
seq = config.get( | |
"n_positions", | |
config.get( | |
"max_position_embeddings", | |
config.get("n_ctx", config.get("seq_length", "")), | |
), | |
) | |
if dim == "" or seq == "": | |
raise Exception(f"Could not find dim or seq for model {model.modelId}") | |
# Get model file size without downloading. Parameters in million parameters and memory in GB | |
parameters, memory = get_model_parameters_memory(model) | |
return dim, seq, parameters, memory | |
def get_external_model_results(): | |
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"): | |
with open("EXTERNAL_MODEL_RESULTS.json") as f: | |
EXTERNAL_MODEL_RESULTS = json.load(f) | |
# Update with models not contained | |
models_to_run = [] | |
for model in EXTERNAL_MODELS: | |
if model not in EXTERNAL_MODEL_RESULTS: | |
models_to_run.append(model) | |
EXTERNAL_MODEL_RESULTS[model] = { | |
k: {v[0]: []} for k, v in TASK_TO_METRIC.items() | |
} | |
## only if we want to re-calculate all instead of using the cache... it's likely they haven't changed | |
## but if your model results have changed, delete it from the "EXTERNAL_MODEL_RESULTS.json" file | |
else: | |
EXTERNAL_MODEL_RESULTS = { | |
model: {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()} | |
for model in EXTERNAL_MODELS | |
} | |
models_to_run = EXTERNAL_MODELS | |
pbar = tqdm(models_to_run, desc="Fetching external model results") | |
for model in pbar: | |
pbar.set_description(f"Fetching external model results for {model!r}") | |
ds = load_dataset( | |
RESULTS_REPO, | |
model, | |
trust_remote_code=True, | |
download_mode="force_redownload", | |
verification_mode="no_checks", | |
) | |
ds = ds.map(add_lang) | |
ds = ds.map(add_task) | |
base_dict = { | |
"Model": make_clickable_model( | |
model, | |
link=EXTERNAL_MODEL_TO_LINK.get( | |
model, f"https://huggingface.co/spaces/{REPO_ID}" | |
), | |
) | |
} | |
for task, metrics in TASK_TO_METRIC.items(): | |
ds_dict = ds.filter(lambda x: filter_metric_external(x, task, metrics))[ | |
"test" | |
].to_dict() | |
ds_dict = { | |
k: round(v, 2) | |
for k, v in zip( | |
ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"] | |
) | |
} | |
# metrics[0] is the main name for this metric; other names in the list are legacy for backward-compat | |
EXTERNAL_MODEL_RESULTS[model][task][metrics[0]].append( | |
{**base_dict, **ds_dict} | |
) | |
# Save & cache EXTERNAL_MODEL_RESULTS | |
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f: | |
json.dump(EXTERNAL_MODEL_RESULTS, f, indent=4) | |
return EXTERNAL_MODEL_RESULTS | |
def download_or_use_cache(modelId: str): | |
global MODEL_CACHE | |
if modelId in MODEL_CACHE: | |
return MODEL_CACHE[modelId] | |
try: | |
readme_path = hf_hub_download(modelId, filename="README.md", etag_timeout=30) | |
except Exception: | |
print(f"ERROR: Could not fetch metadata for {modelId}, trying again") | |
readme_path = hf_hub_download(modelId, filename="README.md", etag_timeout=30) | |
meta = metadata_load(readme_path) | |
MODEL_CACHE[modelId] = meta | |
return meta | |
def get_mteb_data( | |
tasks: list = ["Clustering"], | |
langs: list = [], | |
datasets: list = [], | |
fillna: bool = True, | |
add_emb_dim: bool = True, | |
task_to_metric: dict = TASK_TO_METRIC, | |
rank: bool = True, | |
) -> pd.DataFrame: | |
global MODEL_INFOS | |
with open("EXTERNAL_MODEL_RESULTS.json", "r") as f: | |
external_model_results = json.load(f) | |
api = API | |
models = list(api.list_models(filter="mteb", full=True)) | |
# Legacy names changes; Also fetch the old results & merge later | |
if "MLSUMClusteringP2P (fr)" in datasets: | |
datasets.append("MLSUMClusteringP2P") | |
if "MLSUMClusteringS2S (fr)" in datasets: | |
datasets.append("MLSUMClusteringS2S") | |
if "PawsXPairClassification (fr)" in datasets: | |
datasets.append("PawsX (fr)") | |
# Initialize list to models that we cannot fetch metadata from | |
df_list = [] | |
for model in external_model_results: | |
results_list = [] | |
for task in tasks: | |
# Not all models have InstructionRetrieval, other new tasks | |
if task not in external_model_results[model]: | |
continue | |
results_list += external_model_results[model][task][task_to_metric[task][0]] | |
if len(datasets) > 0: | |
res = { | |
k: v | |
for d in results_list | |
for k, v in d.items() | |
if (k == "Model") or any([x in k for x in datasets]) | |
} | |
elif langs: | |
# Would be cleaner to rely on an extra language column instead | |
langs_format = [f"({lang})" for lang in langs] | |
res = { | |
k: v | |
for d in results_list | |
for k, v in d.items() | |
if any([k.split(" ")[-1] in (k, x) for x in langs_format]) | |
} | |
else: | |
res = {k: v for d in results_list for k, v in d.items()} | |
# Model & at least one result | |
if len(res) > 1: | |
if add_emb_dim: | |
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get( | |
model, "" | |
) | |
res["Memory Usage (GB, fp32)"] = ( | |
round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) | |
if res["Model Size (Million Parameters)"] != "" | |
else "" | |
) | |
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "") | |
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "") | |
df_list.append(res) | |
pbar = tqdm(models, desc="Fetching model metadata") | |
for model in pbar: | |
if model.modelId in MODELS_TO_SKIP: | |
continue | |
pbar.set_description(f"Fetching {model.modelId!r} metadata") | |
meta = download_or_use_cache(model.modelId) | |
MODEL_INFOS[model.modelId] = {"metadata": meta} | |
if "model-index" not in meta: | |
continue | |
# meta['model-index'][0]["results"] is list of elements like: | |
# { | |
# "task": {"type": "Classification"}, | |
# "dataset": { | |
# "type": "mteb/amazon_massive_intent", | |
# "name": "MTEB MassiveIntentClassification (nb)", | |
# "config": "nb", | |
# "split": "test", | |
# }, | |
# "metrics": [ | |
# {"type": "accuracy", "value": 39.81506388702084}, | |
# {"type": "f1", "value": 38.809586587791664}, | |
# ], | |
# }, | |
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out | |
if len(datasets) > 0: | |
task_results = [ | |
sub_res | |
for sub_res in meta["model-index"][0]["results"] | |
if (sub_res.get("task", {}).get("type", "") in tasks) | |
and any( | |
[x in sub_res.get("dataset", {}).get("name", "") for x in datasets] | |
) | |
] | |
elif langs: | |
task_results = [ | |
sub_res | |
for sub_res in meta["model-index"][0]["results"] | |
if (sub_res.get("task", {}).get("type", "") in tasks) | |
and ( | |
sub_res.get("dataset", {}).get("config", "default") | |
in ("default", *langs) | |
) | |
] | |
else: | |
task_results = [ | |
sub_res | |
for sub_res in meta["model-index"][0]["results"] | |
if (sub_res.get("task", {}).get("type", "") in tasks) | |
] | |
try: | |
out = [ | |
{ | |
res["dataset"]["name"].replace("MTEB ", ""): [ | |
round(score["value"], 2) | |
for score in res["metrics"] | |
if filter_metric_fetched( | |
res["dataset"]["name"].replace("MTEB ", ""), | |
score["type"], | |
task_to_metric.get(res["task"]["type"]), | |
) | |
][0] | |
} | |
for res in task_results | |
] | |
except Exception as e: | |
print("ERROR", model.modelId, e) | |
continue | |
out = {k: v for d in out for k, v in d.items()} | |
out["Model"] = make_clickable_model(model.modelId) | |
# Model & at least one result | |
if len(out) > 1: | |
if add_emb_dim: | |
# The except clause triggers on gated repos, we can use external metadata for those | |
try: | |
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model)) | |
except: | |
name_without_org = model.modelId.split("/")[-1] | |
# EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage | |
# we multiply by 1e6 to get just the number of parameters, then by 4 to get the number of bytes | |
# given fp32 precision (4 bytes per float), then divide by 1024**3 to get the number of GB | |
MODEL_INFOS[model.modelId]["dim_seq_size"] = ( | |
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""), | |
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""), | |
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""), | |
round( | |
EXTERNAL_MODEL_TO_SIZE[name_without_org] | |
* 1e6 | |
* 4 | |
/ 1024**3, | |
2, | |
) | |
if name_without_org in EXTERNAL_MODEL_TO_SIZE | |
else "", | |
) | |
( | |
out["Embedding Dimensions"], | |
out["Max Tokens"], | |
out["Model Size (Million Parameters)"], | |
out["Memory Usage (GB, fp32)"], | |
) = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"]) | |
df_list.append(out) | |
model_siblings = model.siblings or [] | |
if ( | |
model.library_name == "sentence-transformers" | |
or "sentence-transformers" in model.tags | |
or "modules.json" in {file.rfilename for file in model_siblings} | |
): | |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"]) | |
# # Save & cache MODEL_INFOS | |
# with open("model_infos.json", "w") as f: | |
# json.dump(MODEL_INFOS, f) | |
df = pd.DataFrame(df_list) | |
# If there are any models that are the same, merge them | |
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one | |
df = df.groupby("Model", as_index=False).first() | |
# Put 'Model' column first | |
cols = sorted(list(df.columns)) | |
base_columns = [ | |
"Model", | |
"Model Size (Million Parameters)", | |
"Memory Usage (GB, fp32)", | |
"Embedding Dimensions", | |
"Max Tokens", | |
] | |
if len(datasets) > 0: | |
# Update legacy column names to be merged with newer ones | |
# Update 'MLSUMClusteringP2P (fr)' with values from 'MLSUMClusteringP2P' | |
if ("MLSUMClusteringP2P (fr)" in datasets) and ("MLSUMClusteringP2P" in cols): | |
df["MLSUMClusteringP2P (fr)"] = df["MLSUMClusteringP2P (fr)"].fillna( | |
df["MLSUMClusteringP2P"] | |
) | |
datasets.remove("MLSUMClusteringP2P") | |
if ("MLSUMClusteringS2S (fr)" in datasets) and ("MLSUMClusteringS2S" in cols): | |
df["MLSUMClusteringS2S (fr)"] = df["MLSUMClusteringS2S (fr)"].fillna( | |
df["MLSUMClusteringS2S"] | |
) | |
datasets.remove("MLSUMClusteringS2S") | |
if ("PawsXPairClassification (fr)" in datasets) and ("PawsX (fr)" in cols): | |
# for the first bit no model has it, hence no column for it. We can remove this in a month or so | |
if "PawsXPairClassification (fr)" not in cols: | |
df["PawsXPairClassification (fr)"] = df["PawsX (fr)"] | |
else: | |
df["PawsXPairClassification (fr)"] = df[ | |
"PawsXPairClassification (fr)" | |
].fillna(df["PawsX (fr)"]) | |
# make all the columns the same | |
datasets.remove("PawsX (fr)") | |
cols.remove("PawsX (fr)") | |
df.drop(columns=["PawsX (fr)"], inplace=True) | |
# Filter invalid columns | |
cols = [col for col in cols if col in base_columns + datasets] | |
i = 0 | |
for column in base_columns: | |
if column in cols: | |
cols.insert(i, cols.pop(cols.index(column))) | |
i += 1 | |
df = df[cols] | |
if rank: | |
df = add_rank(df) | |
if fillna: | |
df.fillna("", inplace=True) | |
return df | |
# Get dict with a task list for each task category | |
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]} | |
def get_mteb_average(task_dict: dict) -> tuple[Any, dict]: | |
all_tasks = reduce(lambda x, y: x + y, task_dict.values()) | |
DATA_OVERALL = get_mteb_data( | |
tasks=list(task_dict.keys()), | |
datasets=all_tasks, | |
fillna=False, | |
add_emb_dim=True, | |
rank=False, | |
) | |
# Debugging: | |
# DATA_OVERALL.to_csv("overall.csv") | |
DATA_OVERALL.insert( | |
1, | |
f"Average ({len(all_tasks)} datasets)", | |
DATA_OVERALL[all_tasks].mean(axis=1, skipna=False), | |
) | |
for i, (task_category, task_category_list) in enumerate(task_dict.items()): | |
DATA_OVERALL.insert( | |
i + 2, | |
f"{task_category} Average ({len(task_category_list)} datasets)", | |
DATA_OVERALL[task_category_list].mean(axis=1, skipna=False), | |
) | |
DATA_OVERALL.sort_values( | |
f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True | |
) | |
# Start ranking from 1 | |
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1))) | |
DATA_OVERALL = DATA_OVERALL.round(2) | |
DATA_TASKS = {} | |
for task_category, task_category_list in task_dict.items(): | |
DATA_TASKS[task_category] = add_rank( | |
DATA_OVERALL[ | |
["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list | |
] | |
) | |
DATA_TASKS[task_category] = DATA_TASKS[task_category][ | |
DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1) | |
] | |
# Fill NaN after averaging | |
DATA_OVERALL.fillna("", inplace=True) | |
data_overall_rows = [ | |
"Rank", | |
"Model", | |
"Model Size (Million Parameters)", | |
"Memory Usage (GB, fp32)", | |
"Embedding Dimensions", | |
"Max Tokens", | |
f"Average ({len(all_tasks)} datasets)", | |
] | |
for task_category, task_category_list in task_dict.items(): | |
data_overall_rows.append( | |
f"{task_category} Average ({len(task_category_list)} datasets)" | |
) | |
DATA_OVERALL = DATA_OVERALL[data_overall_rows] | |
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)] | |
return DATA_OVERALL, DATA_TASKS | |
def refresh_leaderboard() -> tuple[list, dict]: | |
""" | |
The main code to refresh and calculate results for the leaderboard. It does this by fetching the results from the | |
external models and the models in the leaderboard, then calculating the average scores for each task category. | |
""" | |
# get external model results and cache them | |
# NOTE: if your model results have changed, use this function to refresh them (see inside for details) | |
get_external_model_results() | |
boards_data = {} | |
all_data_tasks = [] | |
pbar_tasks = tqdm( | |
BOARDS_CONFIG.items(), | |
desc="Fetching leaderboard results for ???", | |
total=len(BOARDS_CONFIG), | |
leave=True, | |
) | |
for board, board_config in pbar_tasks: | |
boards_data[board] = {"data_overall": None, "data_tasks": {}} | |
pbar_tasks.set_description(f"Fetching leaderboard results for {board!r}") | |
pbar_tasks.refresh() | |
if board_config["has_overall"]: | |
data_overall, data_tasks = get_mteb_average(board_config["tasks"]) | |
boards_data[board]["data_overall"] = data_overall | |
boards_data[board]["data_tasks"] = data_tasks | |
all_data_tasks.extend(data_tasks.values()) | |
else: | |
for task_category, task_category_list in board_config["tasks"].items(): | |
data_task_category = get_mteb_data( | |
tasks=[task_category], datasets=task_category_list | |
) | |
data_task_category.drop( | |
columns=["Embedding Dimensions", "Max Tokens"], inplace=True | |
) | |
boards_data[board]["data_tasks"][task_category] = data_task_category | |
all_data_tasks.append(data_task_category) | |
return all_data_tasks, boards_data | |
def write_out_results(item: dict, item_name: str) -> None: | |
""" | |
Due to their complex structure, let's recursively create subfolders until we reach the end | |
of the item and then save the DFs as jsonl files | |
Args: | |
item: The item to save | |
item_name: The name of the item | |
""" | |
main_folder = item_name | |
if isinstance(item, list): | |
for i, v in enumerate(item): | |
write_out_results(v, os.path.join(main_folder, str(i))) | |
elif isinstance(item, dict): | |
for key, value in item.items(): | |
if isinstance(value, dict): | |
write_out_results(value, os.path.join(main_folder, key)) | |
elif isinstance(value, list): | |
for i, v in enumerate(value): | |
write_out_results(v, os.path.join(main_folder, key + str(i))) | |
else: | |
write_out_results(value, os.path.join(main_folder, key)) | |
elif isinstance(item, pd.DataFrame): | |
print(f"Saving {main_folder} to {main_folder}/default.jsonl") | |
os.makedirs(main_folder, exist_ok=True) | |
if "index" not in item.columns: | |
item.reset_index(inplace=True) | |
item.to_json(f"{main_folder}/default.jsonl", orient="records", lines=True) | |
elif isinstance(item, str): | |
print(f"Saving {main_folder} to {main_folder}/default.txt") | |
os.makedirs(main_folder, exist_ok=True) | |
with open(f"{main_folder}/default.txt", "w") as f: | |
f.write(item) | |
elif item is None: | |
# write out an empty file | |
print(f"Saving {main_folder} to {main_folder}/default.txt") | |
os.makedirs(main_folder, exist_ok=True) | |
with open(f"{main_folder}/default.txt", "w") as f: | |
f.write("") | |
else: | |
raise Exception(f"Unknown type {type(item)}") | |
def load_results(data_path: str) -> list | dict | pd.DataFrame | str | None: | |
""" | |
Do the reverse of `write_out_results` to reconstruct the item | |
Args: | |
data_path: The path to the data to load | |
Returns: | |
The loaded data | |
""" | |
if os.path.isdir(data_path): | |
# if the folder just has numbers from 0 to N, load as a list | |
all_files_in_dir = list(os.listdir(data_path)) | |
if set(all_files_in_dir) == set([str(i) for i in range(len(all_files_in_dir))]): | |
### the list case | |
return [ | |
load_results(os.path.join(data_path, str(i))) | |
for i in range(len(os.listdir(data_path))) | |
] | |
else: | |
if len(all_files_in_dir) == 1: | |
file_name = all_files_in_dir[0] | |
if file_name == "default.jsonl": | |
return load_results(os.path.join(data_path, file_name)) | |
else: ### the dict case | |
return {file_name: load_results(os.path.join(data_path, file_name))} | |
else: | |
return { | |
file_name: load_results(os.path.join(data_path, file_name)) | |
for file_name in all_files_in_dir | |
} | |
elif data_path.endswith(".jsonl"): | |
df = pd.read_json(data_path, orient="records", lines=True) | |
if "index" in df.columns: | |
df = df.set_index("index") | |
if "Memory Usage (GB, fp32)" in df.columns: | |
df["Memory Usage (GB, fp32)"] = df["Memory Usage (GB, fp32)"].map(lambda value: round(value, 2) if isinstance(value, float) else value) | |
return df | |
else: | |
with open(data_path, "r") as f: | |
data = f.read() | |
if data == "": | |
return None | |
else: | |
return data | |
if __name__ == "__main__": | |
print("Refreshing leaderboard statistics...") | |
all_data_tasks, boards_data = refresh_leaderboard() | |
print("Done calculating, saving...") | |
# save them so that the leaderboard can use them. They're quite complex though | |
# but we can't use pickle files because of git-lfs. | |
write_out_results(all_data_tasks, "all_data_tasks") | |
write_out_results(boards_data, "boards_data") | |
# to load them use | |
# all_data_tasks = load_results("all_data_tasks") | |
# boards_data = load_results("boards_data") | |
print("Done saving results!") | |