Spaces:
Running
Running
Muennighoff
commited on
Add model_meta to make space show up
Browse files- model_meta.yml +256 -0
model_meta.yml
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_meta:
|
2 |
+
sentence-transformers/all-MiniLM-L6-v2:
|
3 |
+
link: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
4 |
+
revision: 8b3219a92973c328a8e22fadcfa821b5dc75636a
|
5 |
+
desc: all-MiniLM-L6-v2 by Sentence Transformers
|
6 |
+
seq_len: 512
|
7 |
+
size: 23
|
8 |
+
dim: 384
|
9 |
+
license: Apache 2.0
|
10 |
+
organization: Sentence Transformers
|
11 |
+
mteb_overall: 56.26
|
12 |
+
mteb_retrieval: 41.95
|
13 |
+
mteb_sts: 78.90
|
14 |
+
mteb_clustering: 42.35
|
15 |
+
intfloat/multilingual-e5-small:
|
16 |
+
link: https://huggingface.co/intfloat/multilingual-e5-small
|
17 |
+
revision: e4ce9877abf3edfe10b0d82785e83bdcb973e22e
|
18 |
+
desc: multilingual-e5-small by Microsoft
|
19 |
+
seq_len: 512
|
20 |
+
size: 44
|
21 |
+
dim: 384
|
22 |
+
license: MIT License
|
23 |
+
organization: Microsoft
|
24 |
+
mteb_overall: 57.87
|
25 |
+
mteb_retrieval: 46.64
|
26 |
+
mteb_sts: 79.10
|
27 |
+
mteb_clustering: 37.08
|
28 |
+
intfloat/multilingual-e5-large-instruct:
|
29 |
+
link: https://huggingface.co/intfloat/multilingual-e5-large-instruct
|
30 |
+
revision: baa7be480a7de1539afce709c8f13f833a510e0a
|
31 |
+
desc: multilingual-e5-large-instruct by Microsoft
|
32 |
+
seq_len: 514
|
33 |
+
size: 560
|
34 |
+
dim: 1024
|
35 |
+
license: MIT License
|
36 |
+
organization: Microsoft
|
37 |
+
instruction_query_arxiv: Given a query, retrieve a relevant paper title and abstract from arXiv
|
38 |
+
instruction_query_wikipedia: Given a query, retrieve a relevant title and passage from Wikipedia
|
39 |
+
instruction_query_stackexchange: Given a query, retrieve a relevant question and answer from Stack Exchange
|
40 |
+
instruction_sts: Retrieve semantically similar text
|
41 |
+
instruction_clustering: Identify the topic/theme/category of the text
|
42 |
+
mteb_overall: 64.41
|
43 |
+
mteb_retrieval: 52.47
|
44 |
+
mteb_sts: 84.78
|
45 |
+
mteb_clustering: 47.10
|
46 |
+
intfloat/e5-mistral-7b-instruct:
|
47 |
+
link: https://huggingface.co/intfloat/e5-mistral-7b-instruct
|
48 |
+
revision: 07163b72af1488142a360786df853f237b1a3ca1
|
49 |
+
desc: e5-mistral-7b-instruct by Microsoft
|
50 |
+
seq_len: 32768
|
51 |
+
size: 7111
|
52 |
+
dim: 4096
|
53 |
+
license: MIT License
|
54 |
+
organization: Microsoft
|
55 |
+
instruction_query_arxiv: Given a query, retrieve a relevant paper title and abstract from arXiv
|
56 |
+
instruction_query_wikipedia: Given a query, retrieve a relevant title and passage from Wikipedia
|
57 |
+
instruction_query_stackexchange: Given a query, retrieve a relevant question and answer from Stack Exchange
|
58 |
+
instruction_sts: Retrieve semantically similar text
|
59 |
+
instruction_clustering: Identify the topic/theme/category of the text
|
60 |
+
mteb_overall: 66.63
|
61 |
+
mteb_retrieval: 56.89
|
62 |
+
mteb_sts: 84.63
|
63 |
+
mteb_clustering: 50.26
|
64 |
+
GritLM/GritLM-7B:
|
65 |
+
link: https://huggingface.co/GritLM/GritLM-7B
|
66 |
+
revision: 13f00a0e36500c80ce12870ea513846a066004af
|
67 |
+
desc: GritLM-7B by Contextual AI, HKU, Microsoft
|
68 |
+
seq_len: 32768
|
69 |
+
size: 7240
|
70 |
+
dim: 4096
|
71 |
+
license: Apache 2.0
|
72 |
+
organization: Contextual AI, HKU, Microsoft
|
73 |
+
instruction_query_arxiv: Given a query, retrieve a relevant paper title and abstract from arXiv
|
74 |
+
instruction_query_wikipedia: Given a query, retrieve a relevant title and passage from Wikipedia
|
75 |
+
instruction_query_stackexchange: Given a query, retrieve a relevant question and answer from Stack Exchange
|
76 |
+
instruction_sts: Retrieve semantically similar text
|
77 |
+
instruction_clustering: Identify the topic/theme/category of the text
|
78 |
+
mteb_overall: 66.76
|
79 |
+
mteb_retrieval: 57.41
|
80 |
+
mteb_sts: 83.35
|
81 |
+
mteb_clustering: 50.61
|
82 |
+
BAAI/bge-large-en-v1.5:
|
83 |
+
link: https://huggingface.co/BAAI/bge-large-en-v1.5
|
84 |
+
revision: d4aa6901d3a41ba39fb536a557fa166f842b0e09
|
85 |
+
desc: bge-large-en-v1.5 by BAAI
|
86 |
+
seq_len: 512
|
87 |
+
size: 335
|
88 |
+
dim: 1024
|
89 |
+
license: MIT
|
90 |
+
organization: BAAI
|
91 |
+
mteb_overall: 64.23
|
92 |
+
mteb_retrieval: 54.29
|
93 |
+
mteb_sts: 83.11
|
94 |
+
mteb_clustering: 46.08
|
95 |
+
nvidia/NV-Embed-v1:
|
96 |
+
link: https://huggingface.co/nvidia/NV-Embed-v1
|
97 |
+
revision: 77b11725df91ca45663471a0f2ec6c06e04cbadb
|
98 |
+
desc: NV-Embed-v1 by Nvidia
|
99 |
+
seq_len: 32768
|
100 |
+
size: 7851
|
101 |
+
dim: 4096
|
102 |
+
license: CC-BY-NC-4.0
|
103 |
+
organization: Nvidia
|
104 |
+
mteb_overall: 69.32
|
105 |
+
mteb_retrieval: 59.36
|
106 |
+
mteb_sts: 82.84
|
107 |
+
mteb_clustering: 52.8
|
108 |
+
Alibaba-NLP/gte-Qwen2-7B-instruct:
|
109 |
+
link: https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
|
110 |
+
revision: e26182b2122f4435e8b3ebecbf363990f409b45b
|
111 |
+
desc: gte-Qwen2-7B-instruct by Alibaba
|
112 |
+
seq_len: 131072
|
113 |
+
size: 7613
|
114 |
+
dim: 3584
|
115 |
+
license: Apache 2.0
|
116 |
+
organization: Alibaba
|
117 |
+
instruction_query_arxiv: Given a query, retrieve a relevant paper title and abstract from arXiv
|
118 |
+
instruction_query_wikipedia: Given a query, retrieve a relevant title and passage from Wikipedia
|
119 |
+
instruction_query_stackexchange: Given a query, retrieve a relevant question and answer from Stack Exchange
|
120 |
+
instruction_clustering: Identify the topic/theme/category of the text
|
121 |
+
instruction_sts: Retrieve semantically similar text
|
122 |
+
mteb_overall: 70.24
|
123 |
+
mteb_retrieval: 60.25
|
124 |
+
mteb_sts: 83.04
|
125 |
+
mteb_clustering: 56.92
|
126 |
+
Salesforce/SFR-Embedding-2_R:
|
127 |
+
link: https://huggingface.co/Salesforce/SFR-Embedding-2_R
|
128 |
+
revision: 91762139d94ed4371a9fa31db5551272e0b83818
|
129 |
+
desc: SFR-Embedding-2_R by Salesforce
|
130 |
+
seq_len: 32768
|
131 |
+
size: 7111
|
132 |
+
dim: 4096
|
133 |
+
license: CC-BY-NC-4.0
|
134 |
+
organization: Salesforce
|
135 |
+
instruction_query_arxiv: Given a query, retrieve a relevant paper title and abstract from arXiv
|
136 |
+
instruction_query_wikipedia: Given a query, retrieve a relevant title and passage from Wikipedia
|
137 |
+
instruction_query_stackexchange: Given a query, retrieve a relevant question and answer from Stack Exchange
|
138 |
+
instruction_clustering: Identify the topic/theme/category of the text
|
139 |
+
instruction_sts: Retrieve semantically similar text
|
140 |
+
mteb_overall: 70.31
|
141 |
+
mteb_retrieval: 60.18
|
142 |
+
mteb_sts: 81.26
|
143 |
+
mteb_clustering: 56.17
|
144 |
+
jinaai/jina-embeddings-v2-base-en:
|
145 |
+
link: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
|
146 |
+
revision: 31b72fbf354fea65264ec54edf0b189d94b92d39
|
147 |
+
desc: jina-embeddings-v2-base-en by Jina AI
|
148 |
+
seq_len: 8192
|
149 |
+
size: 137
|
150 |
+
dim: 768
|
151 |
+
license: Apache 2.0
|
152 |
+
organization: Jina AI
|
153 |
+
mteb_overall: 60.38
|
154 |
+
mteb_retrieval: 47.87
|
155 |
+
mteb_sts: 80.70
|
156 |
+
mteb_clustering: 41.73
|
157 |
+
mixedbread-ai/mxbai-embed-large-v1:
|
158 |
+
link: https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
|
159 |
+
revision: 990580e27d329c7408b3741ecff85876e128e203
|
160 |
+
desc: mxbai-embed-large-v1 by mixedbread.ai
|
161 |
+
seq_len: 512
|
162 |
+
size: 335
|
163 |
+
dim: 1024
|
164 |
+
license: Apache 2.0
|
165 |
+
organization: mixedbread.ai
|
166 |
+
mteb_overall: 64.68
|
167 |
+
mteb_retrieval: 54.39
|
168 |
+
mteb_sts: 85.00
|
169 |
+
mteb_clustering: 46.71
|
170 |
+
nomic-ai/nomic-embed-text-v1.5:
|
171 |
+
link: https://huggingface.co/nomic-ai/nomic-embed-text-v1.5
|
172 |
+
revision: b0753ae76394dd36bcfb912a46018088bca48be0
|
173 |
+
desc: nomic-embed-text-v1.5 by nomic.ai
|
174 |
+
seq_len: 8192
|
175 |
+
size: 137
|
176 |
+
dim: 768
|
177 |
+
license: Apache 2.0
|
178 |
+
organization: nomic.ai
|
179 |
+
mteb_overall: 62.28
|
180 |
+
mteb_retrieval: 53.01
|
181 |
+
mteb_sts: 81.94
|
182 |
+
mteb_clustering: 43.93
|
183 |
+
McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised:
|
184 |
+
link: https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised
|
185 |
+
revision: baa8ebf04a1c2500e61288e7dad65e8ae42601a7
|
186 |
+
desc: LLM2Vec by McGill
|
187 |
+
seq_len: 8192
|
188 |
+
size: 7505
|
189 |
+
dim: 4096
|
190 |
+
license: MIT
|
191 |
+
organization: McGill
|
192 |
+
mteb_overall: 65.01
|
193 |
+
mteb_retrieval: 56.63
|
194 |
+
mteb_sts: 83.58
|
195 |
+
mteb_clustering: 46.45
|
196 |
+
voyage-multilingual-2:
|
197 |
+
link: https://docs.voyageai.com/docs/embeddings
|
198 |
+
revision: "1"
|
199 |
+
desc: voyage-multilingual-2 by Voyage AI
|
200 |
+
seq_len: 32000
|
201 |
+
dim: 1024
|
202 |
+
license: Proprietary
|
203 |
+
organization: Voyage AI
|
204 |
+
voyage-large-2-instruct:
|
205 |
+
link: https://docs.voyageai.com/docs/embeddings
|
206 |
+
revision: "1"
|
207 |
+
desc: voyage-large-2-instruct by Voyage AI
|
208 |
+
seq_len: 16000
|
209 |
+
dim: 1024
|
210 |
+
license: Proprietary
|
211 |
+
organization: Voyage AI
|
212 |
+
mteb_overall: 68.28
|
213 |
+
mteb_retrieval: 58.28
|
214 |
+
mteb_sts: 84.58
|
215 |
+
mteb_clustering: 53.35
|
216 |
+
text-embedding-004:
|
217 |
+
link: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api
|
218 |
+
revision: "1"
|
219 |
+
desc: text-embedding-004 by Google
|
220 |
+
seq_len: 2048
|
221 |
+
dim: 768
|
222 |
+
license: Proprietary
|
223 |
+
organization: Google
|
224 |
+
mteb_overall: 66.31
|
225 |
+
mteb_retrieval: 55.7
|
226 |
+
mteb_sts: 85.07
|
227 |
+
mteb_clustering: 47.48
|
228 |
+
text-embedding-3-large:
|
229 |
+
link: https://platform.openai.com/docs/guides/embeddings
|
230 |
+
revision: "1"
|
231 |
+
desc: text-embedding-3-large by OpenAI
|
232 |
+
seq_len: 8191
|
233 |
+
dim: 3072
|
234 |
+
license: Proprietary
|
235 |
+
organization: OpenAI
|
236 |
+
mteb_overall: 64.59
|
237 |
+
mteb_retrieval: 55.44
|
238 |
+
mteb_sts: 81.73
|
239 |
+
mteb_clustering: 49.01
|
240 |
+
embed-english-v3.0:
|
241 |
+
link: https://docs.cohere.com/docs/cohere-embed
|
242 |
+
revision: "1"
|
243 |
+
desc: embed-english-v3.0 by Cohere
|
244 |
+
seq_len: 512
|
245 |
+
dim: 1024
|
246 |
+
license: Proprietary
|
247 |
+
organization: Cohere
|
248 |
+
mteb_overall: 64.47
|
249 |
+
mteb_retrieval: 55
|
250 |
+
mteb_sts: 82.62
|
251 |
+
mteb_clustering: 47.43
|
252 |
+
BM25:
|
253 |
+
link: https://github.com/xhluca/bm25s
|
254 |
+
desc: Fast lexical search via BM25
|
255 |
+
license: MIT
|
256 |
+
mteb_retrieval: 42.4
|