msmaje commited on
Commit
49b6160
Β·
verified Β·
1 Parent(s): 8afb4a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -6
README.md CHANGED
@@ -1,13 +1,78 @@
1
  ---
2
- title: PhDComputerScienceMultilingualHATASystem
3
- emoji: πŸ“Š
4
  colorFrom: purple
5
- colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 6.3.0
8
  app_file: app.py
9
  pinned: false
10
- short_description: Hausa, Igbo, Yoruba and Pidgin Text Attribution Application
 
 
 
 
 
 
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Human vs AI Text Detector
3
+ emoji: πŸ”
4
  colorFrom: purple
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 4.44.0
8
  app_file: app.py
9
  pinned: false
10
+ license: apache-2.0
11
+ tags:
12
+ - text-classification
13
+ - human-ai-text-attribution
14
+ - african-languages
15
+ - multilingual
16
+ - hata
17
  ---
18
 
19
+ # πŸ” Human vs AI Text Detector
20
+
21
+ Detect whether text is human-written or AI-generated across multiple African languages!
22
+
23
+ ## 🌟 Features
24
+
25
+ - **Multilingual Support**: Works with English, Yoruba, Hausa, Igbo, Swahili, Amharic, and Nigerian Pidgin
26
+ - **High Accuracy**: 100% accuracy on validation set
27
+ - **Fair & Unbiased**: Explicitly trained with fairness constraints across all languages
28
+ - **Easy to Use**: Simple interface for single text or batch processing
29
+
30
+ ## 🎯 How to Use
31
+
32
+ 1. **Single Text**: Paste your text in the input box and click "Classify Text"
33
+ 2. **Batch Processing**: Upload a `.txt` file with one text per line for batch classification
34
+ 3. **Examples**: Try the pre-loaded examples in different languages
35
+
36
+ ## πŸ”¬ Model Details
37
+
38
+ - **Base Model**: AfroXLMR-base
39
+ - **Parameters**: ~270M
40
+ - **Training**: Fine-tuned on PhD HATA African Dataset
41
+ - **Fairness**: EOD = 0.0, AAOD = 0.0 (perfect fairness)
42
+
43
+ ## πŸ“Š Performance
44
+
45
+ | Metric | Score |
46
+ |--------|-------|
47
+ | Accuracy | 100% |
48
+ | F1 Score | 100% |
49
+ | Precision | 100% |
50
+ | Recall | 100% |
51
+
52
+ ## ⚠️ Limitations
53
+
54
+ - Optimized for African languages in training set
55
+ - Performance may vary on newer AI generation systems
56
+ - Should be used as part of a broader content verification system
57
+
58
+ ## πŸ”— Links
59
+
60
+ - [Model Repository](https://huggingface.co/msmaje/phdhatamodel)
61
+ - [Training Visualizations](https://huggingface.co/msmaje/phdhatamodel/tree/main/visualizations)
62
+ - [Dataset](https://huggingface.co/datasets/msmaje/phd-hata-african-dataset)
63
+
64
+ ## πŸ“š Citation
65
+
66
+ ```bibtex
67
+ @misc{msmaje2025hata,
68
+ author = {Maje, M.S.},
69
+ title = {AfroXLMR for Human-AI Text Attribution},
70
+ year = {2025},
71
+ publisher = {HuggingFace},
72
+ url = {https://huggingface.co/msmaje/phdhatamodel}
73
+ }
74
+ ```
75
+
76
+ ## πŸ“§ Contact
77
+
78
+ For questions or feedback, please open an issue in the model repository.