Spaces:
Runtime error
Runtime error
Commit
•
1575629
1
Parent(s):
ed8df2e
Major changes to the app to allow prompt engineering (#2)
Browse files- Major changes to the app to allow prompt engineering (ad35daaa7d851793c89104eff8bf4912e5c2dc76)
Co-authored-by: Maddie <Firefly777a@users.noreply.huggingface.co>
app.py
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
|
2 |
'''
|
3 |
-
This script calls the
|
4 |
'''
|
5 |
import os
|
6 |
-
os.system("pip install --upgrade pip")
|
7 |
from pprint import pprint
|
8 |
-
os.system("pip install git+https://github.com/openai/whisper.git")
|
9 |
import sys
|
10 |
-
print("Sys: ", sys.executable)
|
11 |
-
os.system("pip install openai")
|
12 |
import openai
|
13 |
import gradio as gr
|
14 |
import whisper
|
@@ -17,68 +13,47 @@ import torch
|
|
17 |
from transformers import AutoModelForCausalLM
|
18 |
from transformers import AutoTokenizer
|
19 |
import time
|
20 |
-
# import streaming.py
|
21 |
-
# from next_word_prediction import GPT2
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
### /code snippet
|
30 |
-
|
31 |
-
|
32 |
-
# get gpt2 model
|
33 |
-
#generator = pipeline('text-generation', model='gpt2')
|
34 |
-
|
35 |
-
# whisper model specification
|
36 |
-
model = whisper.load_model("tiny")
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
def inference(audio, state=""):
|
41 |
-
|
42 |
-
#time.sleep(2)
|
43 |
-
#text = p(audio)["text"]
|
44 |
-
#state += text + " "
|
45 |
-
# load audio data
|
46 |
-
audio = whisper.load_audio(audio)
|
47 |
-
# ensure sample is in correct format for inference
|
48 |
-
audio = whisper.pad_or_trim(audio)
|
49 |
-
|
50 |
-
# generate a log-mel spetrogram of the audio data
|
51 |
-
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
|
77 |
response = openai.Completion.create(
|
78 |
-
model=
|
79 |
-
#model="text-curie-001",
|
80 |
prompt=text,
|
81 |
-
temperature=
|
82 |
max_tokens=8,
|
83 |
n=5)
|
84 |
|
@@ -96,27 +71,17 @@ Transcript5: """
|
|
96 |
infers = list(map(lambda x: x.replace("\n", ""), temp))
|
97 |
#infered = list(map(lambda x: x.split(','), infers))
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# result.text
|
103 |
-
#return getText, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
104 |
-
return result.text, state, infers
|
105 |
-
|
106 |
-
|
107 |
|
108 |
# get audio from microphone
|
109 |
-
|
110 |
gr.Interface(
|
111 |
-
|
112 |
-
inputs=[
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
live=True).launch()
|
122 |
-
|
|
|
1 |
|
2 |
'''
|
3 |
+
This script calls the model from openai api to predict the next few words.
|
4 |
'''
|
5 |
import os
|
|
|
6 |
from pprint import pprint
|
|
|
7 |
import sys
|
|
|
|
|
8 |
import openai
|
9 |
import gradio as gr
|
10 |
import whisper
|
|
|
13 |
from transformers import AutoModelForCausalLM
|
14 |
from transformers import AutoTokenizer
|
15 |
import time
|
|
|
|
|
16 |
|
17 |
+
EXAMPLE_PROMPT = """This is a tool for helping someone with memory issues remember the next word.
|
18 |
+
The predictions follow a few rules:
|
19 |
+
1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
|
20 |
+
2) The predictions do not repeat themselves.
|
21 |
+
3) The predictions focus on suggesting nouns, adjectives, and verbs.
|
22 |
+
4) The predictions are related to the context in the transcript.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
EXAMPLES:
|
25 |
+
Transcript: Tomorrow night we're going out to
|
26 |
+
Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend
|
27 |
+
Transcript: I would like to order a cheeseburger with a side of
|
28 |
+
Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup
|
29 |
+
Transcript: My friend Savanah is
|
30 |
+
Prediction: An elecrical engineer, A marine biologist, A classical musician
|
31 |
+
Transcript: I need to buy a birthday
|
32 |
+
Prediction: Present, Gift, Cake, Card
|
33 |
+
Transcript: """
|
34 |
+
|
35 |
+
# whisper model specification
|
36 |
+
asr_model = whisper.load_model("tiny")
|
37 |
+
|
38 |
+
openai.api_key = os.environ["Openai_APIkey"]
|
39 |
+
|
40 |
+
# Transcribe function
|
41 |
+
def transcribe(audio_file):
|
42 |
+
print("Transcribing")
|
43 |
+
transcription = asr_model.transcribe(audio_file)["text"]
|
44 |
+
return transcription
|
45 |
+
|
46 |
+
def debug_inference(audio, prompt, model, temperature, state=""):
|
47 |
+
# Transcribe with Whisper
|
48 |
+
print("The audio is:", audio)
|
49 |
+
transcript = transcribe(audio)
|
50 |
|
51 |
+
text = prompt + transcript + "\nPrediction: "
|
52 |
|
53 |
response = openai.Completion.create(
|
54 |
+
model=model,
|
|
|
55 |
prompt=text,
|
56 |
+
temperature=temperature,
|
57 |
max_tokens=8,
|
58 |
n=5)
|
59 |
|
|
|
71 |
infers = list(map(lambda x: x.replace("\n", ""), temp))
|
72 |
#infered = list(map(lambda x: x.split(','), infers))
|
73 |
|
74 |
+
return transcript, state, infers, text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# get audio from microphone
|
|
|
77 |
gr.Interface(
|
78 |
+
fn=debug_inference,
|
79 |
+
inputs=[gr.inputs.Audio(source="microphone", type="filepath"),
|
80 |
+
gr.inputs.Textbox(lines=15, placeholder="Enter a prompt here"),
|
81 |
+
gr.inputs.Dropdown(["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model"),
|
82 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature"),
|
83 |
+
"state"
|
84 |
+
],
|
85 |
+
outputs=["textbox","state","textbox", "textbox"],
|
86 |
+
# examples=[["example_in-the-mood-to-eat.m4a", EXAMPLE_PROMPT, "text-ada-001", 0.8, ""],["","","",0.9,""]],
|
87 |
+
live=False).launch()
|
|
|
|