Manikandan Sivanesan commited on
Commit
17c9cc7
1 Parent(s): d7f7d52
Files changed (4) hide show
  1. README.md +6 -0
  2. app.py +4 -2
  3. dog.png → beagle.png +0 -0
  4. requirements.txt +3 -1
README.md CHANGED
@@ -10,10 +10,16 @@ pinned: false
10
  license: apache-2.0
11
  ---
12
 
 
 
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
14
 
15
  Steps
16
 
17
  - Create a new hf space in your account
18
  - Install git-lfs in order to manager our large model files. Jeremy provided this script https://gist.github.com/jph00/361a9b868aa3593f3fd8e930d0221266. I had to modify the PREFIX in the install.sh since I do not have enough space in PREFIX location. Instead I changed it to $HOME directory.
 
 
 
19
 
 
10
  license: apache-2.0
11
  ---
12
 
13
+ # Disclaimer
14
+ Note: This is a reproduction of the amazing blogpost done by tmabraham https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial
15
+
16
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
17
 
18
  Steps
19
 
20
  - Create a new hf space in your account
21
  - Install git-lfs in order to manager our large model files. Jeremy provided this script https://gist.github.com/jph00/361a9b868aa3593f3fd8e930d0221266. I had to modify the PREFIX in the install.sh since I do not have enough space in PREFIX location. Instead I changed it to $HOME directory.
22
+ - Add export.pkl manually using the hf space. We can directly push to hub using `push_to_hub_fastai` function provided (see app.py).
23
+
24
+
25
 
app.py CHANGED
@@ -1,7 +1,9 @@
1
  import gradio as gr
2
  from fastai.vision.all import *
 
3
  import skimage
4
 
 
5
  learn = load_learner('export.pkl')
6
 
7
  labels = learn.dls.vocab
@@ -13,8 +15,8 @@ def predict(img):
13
  title = "Pet Breed Classifier"
14
  description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
  article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
- examples = ['siamese.jpg']
17
  interpretation='default'
18
  enable_queue=True
19
 
20
- gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
 
1
  import gradio as gr
2
  from fastai.vision.all import *
3
+ from huggingface_hub import push_to_hub_fastai, from_pretrained_fastai
4
  import skimage
5
 
6
+ # Alternatively you can use a pretrained model from huggingface hub
7
  learn = load_learner('export.pkl')
8
 
9
  labels = learn.dls.vocab
 
15
  title = "Pet Breed Classifier"
16
  description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
17
  article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
18
+ examples = ['beagle.jpg']
19
  interpretation='default'
20
  enable_queue=True
21
 
22
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
dog.png → beagle.png RENAMED
File without changes
requirements.txt CHANGED
@@ -1,3 +1,5 @@
1
  fastai
2
  scikit-image
3
- gradio
 
 
 
1
  fastai
2
  scikit-image
3
+ gradio
4
+ git+https://github.com/huggingface/huggingface_hub
5
+