|
|
|
from __future__ import absolute_import |
|
|
|
import sys |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.init as init |
|
from torch.autograd import Variable |
|
import numpy as np |
|
from pdb import set_trace as st |
|
from skimage import color |
|
from IPython import embed |
|
from model.stylegan.lpips import pretrained_networks as pn |
|
|
|
import model.stylegan.lpips as util |
|
|
|
def spatial_average(in_tens, keepdim=True): |
|
return in_tens.mean([2,3],keepdim=keepdim) |
|
|
|
def upsample(in_tens, out_H=64): |
|
in_H = in_tens.shape[2] |
|
scale_factor = 1.*out_H/in_H |
|
|
|
return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens) |
|
|
|
|
|
class PNetLin(nn.Module): |
|
def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False, version='0.1', lpips=True): |
|
super(PNetLin, self).__init__() |
|
|
|
self.pnet_type = pnet_type |
|
self.pnet_tune = pnet_tune |
|
self.pnet_rand = pnet_rand |
|
self.spatial = spatial |
|
self.lpips = lpips |
|
self.version = version |
|
self.scaling_layer = ScalingLayer() |
|
|
|
if(self.pnet_type in ['vgg','vgg16']): |
|
net_type = pn.vgg16 |
|
self.chns = [64,128,256,512,512] |
|
elif(self.pnet_type=='alex'): |
|
net_type = pn.alexnet |
|
self.chns = [64,192,384,256,256] |
|
elif(self.pnet_type=='squeeze'): |
|
net_type = pn.squeezenet |
|
self.chns = [64,128,256,384,384,512,512] |
|
self.L = len(self.chns) |
|
|
|
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune) |
|
|
|
if(lpips): |
|
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) |
|
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) |
|
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) |
|
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) |
|
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) |
|
self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4] |
|
if(self.pnet_type=='squeeze'): |
|
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout) |
|
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout) |
|
self.lins+=[self.lin5,self.lin6] |
|
|
|
def forward(self, in0, in1, retPerLayer=False): |
|
|
|
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version=='0.1' else (in0, in1) |
|
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input) |
|
feats0, feats1, diffs = {}, {}, {} |
|
|
|
for kk in range(self.L): |
|
feats0[kk], feats1[kk] = util.normalize_tensor(outs0[kk]), util.normalize_tensor(outs1[kk]) |
|
diffs[kk] = (feats0[kk]-feats1[kk])**2 |
|
|
|
if(self.lpips): |
|
if(self.spatial): |
|
res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)] |
|
else: |
|
res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)] |
|
else: |
|
if(self.spatial): |
|
res = [upsample(diffs[kk].sum(dim=1,keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)] |
|
else: |
|
res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for kk in range(self.L)] |
|
|
|
val = res[0] |
|
for l in range(1,self.L): |
|
val += res[l] |
|
|
|
if(retPerLayer): |
|
return (val, res) |
|
else: |
|
return val |
|
|
|
class ScalingLayer(nn.Module): |
|
def __init__(self): |
|
super(ScalingLayer, self).__init__() |
|
self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])[None,:,None,None]) |
|
self.register_buffer('scale', torch.Tensor([.458,.448,.450])[None,:,None,None]) |
|
|
|
def forward(self, inp): |
|
return (inp - self.shift) / self.scale |
|
|
|
|
|
class NetLinLayer(nn.Module): |
|
''' A single linear layer which does a 1x1 conv ''' |
|
def __init__(self, chn_in, chn_out=1, use_dropout=False): |
|
super(NetLinLayer, self).__init__() |
|
|
|
layers = [nn.Dropout(),] if(use_dropout) else [] |
|
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),] |
|
self.model = nn.Sequential(*layers) |
|
|
|
|
|
class Dist2LogitLayer(nn.Module): |
|
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) ''' |
|
def __init__(self, chn_mid=32, use_sigmoid=True): |
|
super(Dist2LogitLayer, self).__init__() |
|
|
|
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),] |
|
layers += [nn.LeakyReLU(0.2,True),] |
|
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),] |
|
layers += [nn.LeakyReLU(0.2,True),] |
|
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),] |
|
if(use_sigmoid): |
|
layers += [nn.Sigmoid(),] |
|
self.model = nn.Sequential(*layers) |
|
|
|
def forward(self,d0,d1,eps=0.1): |
|
return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1)) |
|
|
|
class BCERankingLoss(nn.Module): |
|
def __init__(self, chn_mid=32): |
|
super(BCERankingLoss, self).__init__() |
|
self.net = Dist2LogitLayer(chn_mid=chn_mid) |
|
|
|
self.loss = torch.nn.BCELoss() |
|
|
|
def forward(self, d0, d1, judge): |
|
per = (judge+1.)/2. |
|
self.logit = self.net.forward(d0,d1) |
|
return self.loss(self.logit, per) |
|
|
|
|
|
class FakeNet(nn.Module): |
|
def __init__(self, use_gpu=True, colorspace='Lab'): |
|
super(FakeNet, self).__init__() |
|
self.use_gpu = use_gpu |
|
self.colorspace=colorspace |
|
|
|
class L2(FakeNet): |
|
|
|
def forward(self, in0, in1, retPerLayer=None): |
|
assert(in0.size()[0]==1) |
|
|
|
if(self.colorspace=='RGB'): |
|
(N,C,X,Y) = in0.size() |
|
value = torch.mean(torch.mean(torch.mean((in0-in1)**2,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N) |
|
return value |
|
elif(self.colorspace=='Lab'): |
|
value = util.l2(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), |
|
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float') |
|
ret_var = Variable( torch.Tensor((value,) ) ) |
|
if(self.use_gpu): |
|
ret_var = ret_var.cuda() |
|
return ret_var |
|
|
|
class DSSIM(FakeNet): |
|
|
|
def forward(self, in0, in1, retPerLayer=None): |
|
assert(in0.size()[0]==1) |
|
|
|
if(self.colorspace=='RGB'): |
|
value = util.dssim(1.*util.tensor2im(in0.data), 1.*util.tensor2im(in1.data), range=255.).astype('float') |
|
elif(self.colorspace=='Lab'): |
|
value = util.dssim(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), |
|
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float') |
|
ret_var = Variable( torch.Tensor((value,) ) ) |
|
if(self.use_gpu): |
|
ret_var = ret_var.cuda() |
|
return ret_var |
|
|
|
def print_network(net): |
|
num_params = 0 |
|
for param in net.parameters(): |
|
num_params += param.numel() |
|
print('Network',net) |
|
print('Total number of parameters: %d' % num_params) |
|
|