|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from scipy import interpolate |
|
|
|
|
|
class InputPadder: |
|
""" Pads images such that dimensions are divisible by 8 """ |
|
def __init__(self, dims, mode='sintel'): |
|
self.ht, self.wd = dims[-2:] |
|
pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8 |
|
pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8 |
|
if mode == 'sintel': |
|
self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2] |
|
else: |
|
self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht] |
|
|
|
def pad(self, *inputs): |
|
return [F.pad(x, self._pad, mode='replicate') for x in inputs] |
|
|
|
def unpad(self,x): |
|
ht, wd = x.shape[-2:] |
|
c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]] |
|
return x[..., c[0]:c[1], c[2]:c[3]] |
|
|
|
def forward_interpolate(flow): |
|
flow = flow.detach().cpu().numpy() |
|
dx, dy = flow[0], flow[1] |
|
|
|
ht, wd = dx.shape |
|
x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht)) |
|
|
|
x1 = x0 + dx |
|
y1 = y0 + dy |
|
|
|
x1 = x1.reshape(-1) |
|
y1 = y1.reshape(-1) |
|
dx = dx.reshape(-1) |
|
dy = dy.reshape(-1) |
|
|
|
valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht) |
|
x1 = x1[valid] |
|
y1 = y1[valid] |
|
dx = dx[valid] |
|
dy = dy[valid] |
|
|
|
flow_x = interpolate.griddata( |
|
(x1, y1), dx, (x0, y0), method='nearest', fill_value=0) |
|
|
|
flow_y = interpolate.griddata( |
|
(x1, y1), dy, (x0, y0), method='nearest', fill_value=0) |
|
|
|
flow = np.stack([flow_x, flow_y], axis=0) |
|
return torch.from_numpy(flow).float() |
|
|
|
|
|
def bilinear_sampler(img, coords, mode='bilinear', mask=False): |
|
""" Wrapper for grid_sample, uses pixel coordinates """ |
|
H, W = img.shape[-2:] |
|
xgrid, ygrid = coords.split([1,1], dim=-1) |
|
xgrid = 2*xgrid/(W-1) - 1 |
|
ygrid = 2*ygrid/(H-1) - 1 |
|
|
|
grid = torch.cat([xgrid, ygrid], dim=-1) |
|
img = F.grid_sample(img, grid, align_corners=True) |
|
|
|
if mask: |
|
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) |
|
return img, mask.float() |
|
|
|
return img |
|
|
|
|
|
def coords_grid(batch, ht, wd, device): |
|
coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device)) |
|
coords = torch.stack(coords[::-1], dim=0).float() |
|
return coords[None].repeat(batch, 1, 1, 1) |
|
|
|
|
|
def upflow8(flow, mode='bilinear'): |
|
new_size = (8 * flow.shape[2], 8 * flow.shape[3]) |
|
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True) |
|
|