msheriff commited on
Commit
0572c8f
1 Parent(s): 54d31d3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import matplotlib.patches as patches
3
+ from matplotlib.patches import Patch
4
+ import io
5
+ from PIL import Image, ImageDraw58655
6
+ import numpy as np
7
+ import csv
8
+ import pandas as pd
9
+
10
+ from torchvision import transforms
11
+
12
+ from transformers import AutoModelForObjectDetection
13
+ import torch
14
+
15
+ import easyocr
16
+
17
+ import gradio as gr
18
+
19
+
20
+ device = "cuda" if torch.cuda.is_available() else "cpu"
21
+
22
+ def process_pdf():
23
+ print('process_pdf')
24
+ # cropped_table = detect_and_crop_table(image)
25
+ # image, cells = recognize_table(cropped_table)
26
+
27
+ # cell_coordinates = get_cell_coordinates_by_row(cells)
28
+ # df, data = apply_ocr(cell_coordinates, image)
29
+
30
+ # return image, df, data
31
+ return [], [], []
32
+
33
+ title = "Sheriff's Demo: Table Detection & Recognition with Table Transformer (TATR)."
34
+ description = """A demo by M Sheriff for table extraction with the Table Transformer.
35
+ First, table detection is performed on the input image using https://huggingface.co/microsoft/table-transformer-detection,
36
+ after which the detected table is extracted and https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all recognizes the
37
+ individual rows, columns and cells. OCR is then performed per cell, row by row."""
38
+ examples = [['image.png'], ['mistral_paper.png']]
39
+
40
+ app = gr.Interface(fn=process_pdf,
41
+ inputs=gr.Image(type="pil"),
42
+ outputs=[gr.Image(type="pil", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")],
43
+ title=title,
44
+ description=description,
45
+ examples=examples)
46
+ app.queue()
47
+ app.launch(debug=True)