BarlowDTI / utils /sequence.py
mschuh's picture
Update to ZeroGPU
02327b3 verified
raw
history blame
12.5 kB
import requests
import numpy as np
# from bio_embeddings.embed import SeqVecEmbedder, ProtTransBertBFDEmbedder, ProtTransT5XLU50Embedder
from transformers import T5Tokenizer, T5EncoderModel
import torch
import re
import concurrent.futures
from tqdm.auto import tqdm
import multiprocessing
from multiprocessing import Pool
import spaces
ENCODERS = {
# "seqvec": SeqVecEmbedder(),
# "prottrans_bert_bfd": ProtTransBertBFDEmbedder(),
# "prottrans_t5_xl_u50": ProtTransT5XLU50Embedder(),
"prot_t5": {
"tokenizer": T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False),
"model": T5EncoderModel.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc')
},
"prost_t5": {
"tokenizer": T5Tokenizer.from_pretrained("Rostlab/ProstT5", do_lower_case=False),
"model": T5EncoderModel.from_pretrained("Rostlab/ProstT5")
}
}
def drugbank2smiles(drugbank_id):
url = f"https://go.drugbank.com/drugs/{drugbank_id}.smiles"
response = requests.get(url)
if response.status_code == 200:
return response.text
else:
# print(f"Failed to get SMILES for {drugbank_id}")
return None
def uniprot2sequence(uniprot_id):
url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.fasta"
response = requests.get(url)
if response.status_code == 200:
# Extract sequence from FASTA format
sequence = "".join(response.text.split("\n")[1:])
return sequence
else:
# print(f"Failed to get sequence for {uniprot_id}")
return None
@spaces.GPU
def encode_sequences(sequences: list, encoder: str):
if encoder not in ENCODERS.keys():
raise ValueError(f"Invalid encoder: {encoder}")
model = ENCODERS[encoder]["model"]
tokenizer = ENCODERS[encoder]["tokenizer"]
# Cache for storing encoded sequences
cache = {}
def encode_sequence(sequence: str):
if sequence is None:
return None
if len(sequence) <= 3:
raise ValueError(f"Invalid sequence: {sequence}")
# Check if the sequence is already in the cache
if sequence in cache:
return cache[sequence]
else:
# Encode the sequence and store it in the cache
try:
encoded_sequence = model.embed(sequence)
encoded_sequence = np.mean(encoded_sequence, axis=0)
cache[sequence] = encoded_sequence
return encoded_sequence
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
print(e)
return None
def encode_sequence_device_failover(sequence: str, function, timeout: int = 120):
if sequence is None:
return None
if sequence in cache:
return cache[sequence]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
try:
# Try to process using GPU
result = function(sequence, device)
except RuntimeError as e:
print(e)
return None
if "CUDA out of memory." in str(e):
print("Trying on CPU instead.")
device = torch.device("cpu")
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(function, sequence, device)
try:
result = future.result(timeout=timeout)
except concurrent.futures.TimeoutError:
print(f"CPU encoding timed out.")
cache[sequence] = None
return None
else:
cache[sequence] = None
raise Exception(e)
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
cache[sequence] = None
return None
cache[sequence] = result
return result
def encode_sequence_hf_3d(sequence, device):
sequence_1d_list = [sequence]
model.full() if device == "cpu" else model.half()
model.to(device)
ids = tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = model(
ids.input_ids,
attention_mask=ids.attention_mask
)
# Skip the first token, which is the special token for the entire sequence and mean pool the rest
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
def encode_sequence_hf(sequence, device):
sequence_1d_list = [sequence]
model.full() if device == "cpu" else model.half()
model.to(device)
ids = tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = model(
ids.input_ids,
attention_mask=ids.attention_mask
)
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, :-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
# Use list comprehension to encode all sequences, utilizing the cache
if encoder == "seqvec":
raise NotImplementedError("SeqVec is not supported")
seq = encoder_function.embed(list(sequences))
seq = np.sum(seq, axis=0)
if encoder == "prost_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
# The direction of the translation is indicated by two special tokens:
# if you go from AAs to 3Di (or if you want to embed AAs), you need to prepend "<AA2fold>"
# if you go from 3Di to AAs (or if you want to embed 3Di), you need to prepend "<fold2AA>"
sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
seq = [encode_sequence_device_failover(sequence, encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]
elif encoder == "prot_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
seq = [encode_sequence_device_failover(sequence, encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]
else:
raise NotImplementedError("SeqVec is not supported")
seq = [encode_sequence(sequence) for sequence in sequences]
return np.array(seq)
class SequenceEncoder:
def __init__(self, encoder: str):
if encoder not in ENCODERS:
raise ValueError(f"Invalid encoder: {encoder}")
self.encoder = encoder
self.model = ENCODERS[encoder]["model"]
self.tokenizer = ENCODERS[encoder]["tokenizer"]
self.cache = {}
def encode_sequence(self, sequence: str):
if sequence is None:
return None
if len(sequence) <= 3:
raise ValueError(f"Invalid sequence: {sequence}")
if sequence in self.cache:
return self.cache[sequence]
try:
encoded_sequence = self.model.embed(sequence)
encoded_sequence = np.mean(encoded_sequence, axis=0)
self.cache[sequence] = encoded_sequence
return encoded_sequence
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
print(e)
return None
def encode_sequence_device_failover(self, sequence: str, function, timeout: int = 5):
if sequence is None:
return None
if sequence in self.cache:
return self.cache[sequence]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
try:
result = function(sequence, device)
except RuntimeError as e:
return None
print(e)
if "CUDA out of memory." in str(e):
print("Trying on CPU instead.")
device = torch.device("cpu")
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(function, sequence, device)
try:
result = future.result(timeout=timeout)
except:
print(f"CPU encoding timed out.")
self.cache[sequence] = None
return None
finally:
executor.shutdown(wait=False)
else:
self.cache[sequence] = None
return None
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
self.cache[sequence] = None
return None
self.cache[sequence] = result
return result
def encode_sequence_hf_3d(self, sequence, device):
sequence_1d_list = [sequence]
self.model.full() if device == "cpu" else self.model.half()
self.model.to(device)
ids = self.tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = self.model(
ids.input_ids,
attention_mask=ids.attention_mask
)
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
def encode_sequence_hf(self, sequence, device):
sequence_1d_list = [sequence]
self.model.full() if device == "cpu" else self.model.half()
self.model.to(device)
ids = self.tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = self.model(
ids.input_ids,
attention_mask=ids.attention_mask
)
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, :-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
def encode_sequences(self, sequences: list):
if self.encoder == "seqvec":
raise NotImplementedError("SeqVec is not supported")
seq = self.encoder_function.embed(list(sequences))
seq = np.sum(seq, axis=0)
elif self.encoder == "prost_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]
elif self.encoder == "prot_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]
else:
raise NotImplementedError("SeqVec is not supported")
seq = [self.encode_sequence(sequence) for sequence in sequences]
if any([x is None for x in seq]):
return seq
else:
return np.array(seq)