Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
import h5py | |
import faiss | |
from PIL import Image | |
import io | |
import pickle | |
def searchEmbeddings(id): | |
# variable and index initialization | |
dim = 768 | |
count = 0 | |
num_neighbors = 10 | |
image_index = faiss.IndexFlatIP(dim) | |
# get index | |
image_index = faiss.read_index("image_index.index") | |
# search for query | |
query = id_emb_dict[id] | |
query = query.astype(np.float32) | |
D, I = image_index.search(query, num_neighbors) | |
id_list = [] | |
i = 1 | |
for indx in I[0]: | |
id = indx_to_id_dict[indx] | |
id_list.append(id) | |
return id_list | |
with gr.Blocks() as demo: | |
with open("dataset_processid_list.pickle", "rb") as f: | |
dataset_processid_list = pickle.load(f) | |
with open("dataset_image_mask.pickle", "rb") as f: | |
dataset_image_mask = pickle.load(f) | |
with open("processid_to_index.pickle", "rb") as f: | |
processid_to_index = pickle.load(f) | |
with open("big_id_to_emb_dict.pickle", "rb") as f: | |
id_emb_dict = pickle.load(f) | |
with open("big_indx_to_id_dict.pickle", "rb") as f: | |
indx_to_id_dict = pickle.load(f) | |
with gr.Column(): | |
process_id = gr.Textbox(label="ID:", info="Enter a sample ID to search for") | |
process_id_list = gr.Textbox(label="Closest 10 matches:" ) | |
search_btn = gr.Button("Search") | |
search_btn.click(fn=searchEmbeddings, inputs=process_id, | |
outputs=[process_id_list]) | |
# ARONZ671-20 | |
demo.launch() | |