Spaces:
Running
Running
bean@DESKTOP-G2JAGVE
commited on
Commit
·
612907b
1
Parent(s):
ba05b10
Add application file
Browse files- imageSearching.py +105 -0
imageSearching.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import h5py
|
5 |
+
import faiss
|
6 |
+
import json
|
7 |
+
import hydra
|
8 |
+
import time
|
9 |
+
import random
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
import pickle
|
13 |
+
|
14 |
+
def get_image(file, dataset_image_mask, processid_to_index, idx):
|
15 |
+
# idx = processid_to_index[query_id]
|
16 |
+
image_enc_padded = file["image"][idx].astype(np.uint8)
|
17 |
+
enc_length = dataset_image_mask[idx]
|
18 |
+
image_enc = image_enc_padded[:enc_length]
|
19 |
+
image = Image.open(io.BytesIO(image_enc))
|
20 |
+
return image
|
21 |
+
|
22 |
+
def searchEmbeddings(id):
|
23 |
+
# get embeddings from file
|
24 |
+
embeddings_file = h5py.File('5m/extracted_features_of_all_keys.hdf5', 'r')
|
25 |
+
|
26 |
+
# variable and index initialization
|
27 |
+
dim = 768
|
28 |
+
count = 0
|
29 |
+
num_neighbors = 10
|
30 |
+
|
31 |
+
image_index = faiss.IndexFlatIP(dim)
|
32 |
+
|
33 |
+
# load dictionaries
|
34 |
+
with open("id_emb_dict.pickle", "rb") as f:
|
35 |
+
id_to_emb_dict = pickle.load(f)
|
36 |
+
with open("indx_to_id.pickle", "rb") as f:
|
37 |
+
indx_to_id_dict = pickle.load(f)
|
38 |
+
|
39 |
+
# get index
|
40 |
+
image_index = faiss.read_index("image_index.index")
|
41 |
+
|
42 |
+
# search for query
|
43 |
+
query = id_to_emb_dict[id]
|
44 |
+
query = query.astype(np.float32)
|
45 |
+
D, I = image_index.search(query, num_neighbors)
|
46 |
+
|
47 |
+
id_list = []
|
48 |
+
# need to convert I to id
|
49 |
+
i = 1
|
50 |
+
for indx in I[0]:
|
51 |
+
id = indx_to_id_dict[indx]
|
52 |
+
id_list.append(id)
|
53 |
+
# id_list.append(str(i) + ": " + id)
|
54 |
+
# i += 1
|
55 |
+
|
56 |
+
# get image data
|
57 |
+
dataset_hdf5_all_key = h5py.File('full5m/BIOSCAN_5M.hdf5', "r", libver="latest")['all_keys']
|
58 |
+
dataset_processid_list = [item.decode("utf-8") for item in dataset_hdf5_all_key["processid"][:]]
|
59 |
+
dataset_image_mask = dataset_hdf5_all_key["image_mask"][:]
|
60 |
+
processid_to_index = {pid: idx for idx, pid in enumerate(dataset_processid_list)}
|
61 |
+
|
62 |
+
image1 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][0])
|
63 |
+
image2 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][1])
|
64 |
+
image3 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][2])
|
65 |
+
image4 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][3])
|
66 |
+
image5 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][4])
|
67 |
+
image6 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][5])
|
68 |
+
image7 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][6])
|
69 |
+
image8 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][7])
|
70 |
+
image9 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][8])
|
71 |
+
image10 = get_image(dataset_hdf5_all_key, dataset_image_mask, processid_to_index, I[0][9])
|
72 |
+
|
73 |
+
# return id_list, id_list[0], id_list[1], id_list[2], id_list[3], id_list[4], id_list[5], id_list[6], id_list[7], id_list[8], id_list[9], image1, image2, image3, image4, image5, image6, image7, image8, image9, image10
|
74 |
+
# return id_list, indx_to_id_dict[I[0][0]], indx_to_id_dict[I[0][1]], indx_to_id_dict[I[0][2]], indx_to_id_dict[I[0][3]], indx_to_id_dict[I[0][4]], indx_to_id_dict[I[0][5]], indx_to_id_dict[I[0][6]], indx_to_id_dict[I[0][7]], indx_to_id_dict[I[0][8]], indx_to_id_dict[I[0][9]]
|
75 |
+
return id_list, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10
|
76 |
+
|
77 |
+
with gr.Blocks() as demo:
|
78 |
+
with gr.Column():
|
79 |
+
process_id = gr.Textbox(label="ID:", info="Enter a sample ID to search for")
|
80 |
+
process_id_list = gr.Textbox(label="Closest 10 matches:" )
|
81 |
+
search_btn = gr.Button("Search")
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
image1 = gr.Image(label=1)
|
85 |
+
image2 = gr.Image(label=2)
|
86 |
+
image3 = gr.Image(label=3)
|
87 |
+
image4 = gr.Image(label=4)
|
88 |
+
image5 = gr.Image(label=5)
|
89 |
+
with gr.Row():
|
90 |
+
image6 = gr.Image(label=6)
|
91 |
+
image7 = gr.Image(label=7)
|
92 |
+
image8 = gr.Image(label=8)
|
93 |
+
image9 = gr.Image(label=9)
|
94 |
+
image10 = gr.Image(label=10)
|
95 |
+
|
96 |
+
search_btn.click(fn=searchEmbeddings, inputs=process_id,
|
97 |
+
outputs=[process_id_list, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10])
|
98 |
+
|
99 |
+
|
100 |
+
# cant make functions with Image's as inputs
|
101 |
+
# MUST be a way to format after
|
102 |
+
|
103 |
+
|
104 |
+
# ARONZ671-20
|
105 |
+
demo.launch(share=True)
|