Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import h5py
|
5 |
+
import faiss
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import pickle
|
9 |
+
import random
|
10 |
+
|
11 |
+
def getRandID():
|
12 |
+
indx = random.randrange(0, 396503)
|
13 |
+
return indx_to_id_dict[indx], indx
|
14 |
+
|
15 |
+
def chooseImageIndex(indexType):
|
16 |
+
if (indexType == "FlatIP(default)"):
|
17 |
+
return image_index_IP
|
18 |
+
elif (indexType == "FlatL2"):
|
19 |
+
return image_index_L2
|
20 |
+
elif (indexType == "HNSWFlat"):
|
21 |
+
return image_index_HNSW
|
22 |
+
elif (indexType == "IVFFlat"):
|
23 |
+
return image_index_IVF
|
24 |
+
elif (indexType == "LSH"):
|
25 |
+
return image_index_LSH
|
26 |
+
|
27 |
+
def chooseDNAIndex(indexType):
|
28 |
+
if (indexType == "FlatIP(default)"):
|
29 |
+
return dna_index_IP
|
30 |
+
elif (indexType == "FlatL2"):
|
31 |
+
return dna_index_L2
|
32 |
+
elif (indexType == "HNSWFlat"):
|
33 |
+
return dna_index_HNSW
|
34 |
+
elif (indexType == "IVFFlat"):
|
35 |
+
return dna_index_IVF
|
36 |
+
elif (indexType == "LSH"):
|
37 |
+
return dna_index_LSH
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def searchEmbeddings(id, mod1, mod2, indexType):
|
42 |
+
# variable and index initialization
|
43 |
+
dim = 768
|
44 |
+
count = 0
|
45 |
+
num_neighbors = 10
|
46 |
+
|
47 |
+
index = faiss.IndexFlatIP(dim)
|
48 |
+
|
49 |
+
# get index
|
50 |
+
if (mod2 == "Image"):
|
51 |
+
index = chooseImageIndex(indexType)
|
52 |
+
elif (mod2 == "DNA"):
|
53 |
+
index = chooseDNAIndex(indexType)
|
54 |
+
|
55 |
+
|
56 |
+
# search for query
|
57 |
+
if (mod1 == "Image"):
|
58 |
+
query = id_to_image_emb_dict[id]
|
59 |
+
elif (mod1 == "DNA"):
|
60 |
+
query = id_to_dna_emb_dict[id]
|
61 |
+
query = query.astype(np.float32)
|
62 |
+
D, I = index.search(query, num_neighbors)
|
63 |
+
|
64 |
+
id_list = []
|
65 |
+
i = 1
|
66 |
+
for indx in I[0]:
|
67 |
+
id = indx_to_id_dict[indx]
|
68 |
+
id_list.append(id)
|
69 |
+
|
70 |
+
return id_list
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
|
74 |
+
# for hf: change all file paths, indx_to_id_dict as well
|
75 |
+
|
76 |
+
# load indexes
|
77 |
+
image_index_IP = faiss.read_index("big_image_index_FlatIP.index")
|
78 |
+
image_index_L2 = faiss.read_index("big_image_index_FlatL2.index")
|
79 |
+
image_index_HNSW = faiss.read_index("big_image_index_HNSWFlat.index")
|
80 |
+
image_index_IVF = faiss.read_index("big_image_index_IVFFlat.index")
|
81 |
+
image_index_LSH = faiss.read_index("big_image_index_LSH.index")
|
82 |
+
|
83 |
+
dna_index_IP = faiss.read_index("big_dna_index_FlatIP.index")
|
84 |
+
dna_index_L2 = faiss.read_index("big_dna_index_FlatL2.index")
|
85 |
+
dna_index_HNSW = faiss.read_index("big_dna_index_HNSWFlat.index")
|
86 |
+
dna_index_IVF = faiss.read_index("big_dna_index_IVFFlat.index")
|
87 |
+
dna_index_LSH = faiss.read_index("big_dna_index_LSH.index")
|
88 |
+
|
89 |
+
with open("dataset_processid_list.pickle", "rb") as f:
|
90 |
+
dataset_processid_list = pickle.load(f)
|
91 |
+
with open("processid_to_index.pickle", "rb") as f:
|
92 |
+
processid_to_index = pickle.load(f)
|
93 |
+
with open("big_indx_to_id_dict.pickle", "rb") as f:
|
94 |
+
indx_to_id_dict = pickle.load(f)
|
95 |
+
|
96 |
+
# initialize both possible dicts
|
97 |
+
with open("big_id_to_image_emb_dict.pickle", "rb") as f:
|
98 |
+
id_to_image_emb_dict = pickle.load(f)
|
99 |
+
with open("big_id_to_dna_emb_dict.pickle", "rb") as f:
|
100 |
+
id_to_dna_emb_dict = pickle.load(f)
|
101 |
+
|
102 |
+
with gr.Column():
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
rand_id = gr.Textbox(label="Random ID:")
|
106 |
+
rand_id_indx = gr.Textbox(label="Index:")
|
107 |
+
id_btn = gr.Button("Get Random ID")
|
108 |
+
with gr.Column():
|
109 |
+
mod1 = gr.Radio(choices=["DNA", "Image"], label="Search From:")
|
110 |
+
mod2 = gr.Radio(choices=["DNA", "Image"], label="Search To:")
|
111 |
+
|
112 |
+
indexType = gr.Radio(choices=["FlatIP(default)", "FlatL2", "HNSWFlat", "IVFFlat", "LSH"], label="Index:", value="FlatIP(default)")
|
113 |
+
process_id = gr.Textbox(label="ID:", info="Enter a sample ID to search for")
|
114 |
+
process_id_list = gr.Textbox(label="Closest 10 matches:" )
|
115 |
+
search_btn = gr.Button("Search")
|
116 |
+
id_btn.click(fn=getRandID, inputs=[], outputs=[rand_id, rand_id_indx])
|
117 |
+
|
118 |
+
search_btn.click(fn=searchEmbeddings, inputs=[process_id, mod1, mod2, indexType],
|
119 |
+
outputs=[process_id_list])
|
120 |
+
|
121 |
+
|
122 |
+
demo.launch()
|