Spaces:
Runtime error
Runtime error
import gradio as gr | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.layers import DepthwiseConv2D | |
from PIL import Image, ImageOps | |
import numpy as np | |
# Disable scientific notation for clarity | |
np.set_printoptions(suppress=True) | |
# Custom object for DepthwiseConv2D | |
custom_objects = {'DepthwiseConv2D': DepthwiseConv2D} | |
# Load the model with custom objects | |
model = load_model("model/pleasuredomes_image_model.h5", custom_objects=custom_objects, compile=False) | |
# Load the labels | |
class_names = open("model/labels.txt", "r").readlines() | |
def predict_image(image): | |
""" | |
Function to process the image and make a prediction using the loaded model. | |
""" | |
# Resize the image to be at least 224x224 and then crop from the center | |
size = (224, 224) | |
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS) | |
# Turn the image into a numpy array | |
image_array = np.asarray(image) | |
# Normalize the image | |
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 | |
# Create the array of the right shape to feed into the keras model | |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
data[0] = normalized_image_array | |
# Predict the model | |
prediction = model.predict(data) | |
index = np.argmax(prediction) | |
class_name = class_names[index].strip() | |
confidence_score = prediction[0][index] | |
return f"Class: {class_name}, Confidence Score: {confidence_score:.2f}" | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="pil"), # Updated to gr.Image | |
outputs="text", | |
title="Image Classification", | |
description="Upload an image to classify it using the pre-trained model.", | |
flagging_options=None | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
interface.launch(share=False) |