mrvero's picture
Update app.py
6faaa4c verified
raw
history blame
1.83 kB
import gradio as gr
from tensorflow.keras.models import load_model
from tensorflow.keras.layers import DepthwiseConv2D
from PIL import Image, ImageOps
import numpy as np
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Custom object for DepthwiseConv2D
custom_objects = {'DepthwiseConv2D': DepthwiseConv2D}
# Load the model with custom objects
model = load_model("model/pleasuredomes_image_model.h5", custom_objects=custom_objects, compile=False)
# Load the labels
class_names = open("model/labels.txt", "r").readlines()
def predict_image(image):
"""
Function to process the image and make a prediction using the loaded model.
"""
# Resize the image to be at least 224x224 and then crop from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
# Turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
# Create the array of the right shape to feed into the keras model
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
data[0] = normalized_image_array
# Predict the model
prediction = model.predict(data)
index = np.argmax(prediction)
class_name = class_names[index].strip()
confidence_score = prediction[0][index]
return f"Class: {class_name}, Confidence Score: {confidence_score:.2f}"
# Create a Gradio interface
interface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"), # Updated to gr.Image
outputs="text",
title="Image Classification",
description="Upload an image to classify it using the pre-trained model.",
flagging_options=None
)
# Launch the interface
if __name__ == "__main__":
interface.launch(share=False)