Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
4 |
from gtts import gTTS
|
5 |
from io import BytesIO
|
6 |
import re
|
|
|
7 |
|
8 |
model_name = "pszemraj/led-base-book-summary"
|
9 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
@@ -16,37 +17,58 @@ def extract_first_sentence(text):
|
|
16 |
else:
|
17 |
return text
|
18 |
|
19 |
-
def
|
20 |
try:
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
if "Abstract" in page.extract_text() or "Introduction" in page.extract_text():
|
25 |
-
abstract_text = page.extract_text()
|
26 |
-
break
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
summary_sentence = extract_first_sentence(summary)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
speech_bytes = BytesIO()
|
38 |
-
speech.write_to_fp(speech_bytes)
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
except Exception as e:
|
44 |
raise Exception(str(e))
|
45 |
|
46 |
interface = gr.Interface(
|
47 |
-
fn=
|
48 |
inputs=[gr.File(label="Upload PDF")],
|
49 |
outputs=[gr.Textbox(label="Summary"), gr.Audio()],
|
|
|
|
|
|
|
50 |
)
|
51 |
|
52 |
-
interface.launch(share=True)
|
|
|
4 |
from gtts import gTTS
|
5 |
from io import BytesIO
|
6 |
import re
|
7 |
+
import os
|
8 |
|
9 |
model_name = "pszemraj/led-base-book-summary"
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
17 |
else:
|
18 |
return text
|
19 |
|
20 |
+
def extract_abstract_and_summarize(pdf_file):
|
21 |
try:
|
22 |
+
with open(pdf_file, 'rb') as file:
|
23 |
+
pdf_reader = PdfReader(file)
|
24 |
+
abstract_text = ''
|
|
|
|
|
|
|
25 |
|
26 |
+
for page_num in range(len(pdf_reader.pages)):
|
27 |
+
page = pdf_reader.pages[page_num]
|
28 |
+
text = page.extract_text()
|
29 |
|
30 |
+
abstract_match = re.search(r'\bAbstract\b', text, re.IGNORECASE)
|
|
|
31 |
|
32 |
+
if abstract_match:
|
33 |
+
start_index = abstract_match.end()
|
|
|
|
|
34 |
|
35 |
+
# Check for the next heading or section marker
|
36 |
+
next_section_match = re.search(r'\b(?:Introduction|Methodology|Conclusion)\b', text[start_index:])
|
37 |
+
|
38 |
+
if next_section_match:
|
39 |
+
end_index = start_index + next_section_match.start()
|
40 |
+
abstract_text = text[start_index:end_index]
|
41 |
+
else:
|
42 |
+
abstract_text = text[start_index:]
|
43 |
+
|
44 |
+
break # Exit loop once abstract is found
|
45 |
+
|
46 |
+
# Summarize the extracted abstract
|
47 |
+
inputs = tokenizer(abstract_text, return_tensors="pt")
|
48 |
+
outputs = model.generate(**inputs)
|
49 |
+
summary = tokenizer.decode(outputs[0])
|
50 |
+
|
51 |
+
# Extract only the first sentence
|
52 |
+
summary_sentence = extract_first_sentence(summary)
|
53 |
+
|
54 |
+
# Generate audio
|
55 |
+
speech = gTTS(text=summary_sentence, lang="en")
|
56 |
+
speech_bytes = BytesIO()
|
57 |
+
speech.write_to_fp(speech_bytes)
|
58 |
+
|
59 |
+
# Return individual output values
|
60 |
+
return summary_sentence, speech_bytes.getvalue(), abstract_text.strip()
|
61 |
|
62 |
except Exception as e:
|
63 |
raise Exception(str(e))
|
64 |
|
65 |
interface = gr.Interface(
|
66 |
+
fn=extract_abstract_and_summarize,
|
67 |
inputs=[gr.File(label="Upload PDF")],
|
68 |
outputs=[gr.Textbox(label="Summary"), gr.Audio()],
|
69 |
+
title="PDF Summarization & Audio Tool",
|
70 |
+
description="""PDF Summarization App. This app extracts the abstract from a PDF, summarizes it in one sentence, and generates an audio of it. Only upload PDFs with abstracts.
|
71 |
+
Please read the README.MD for information about the app and sample PDFs.""",
|
72 |
)
|
73 |
|
74 |
+
interface.launch(share=True)
|