Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PIL.Image as Image
|
3 |
+
|
4 |
+
from ultralytics import ASSETS, YOLO
|
5 |
+
|
6 |
+
model_egg = YOLO("/content/drive/MyDrive/EPR_Detection/weights/egg_best.pt")
|
7 |
+
model_nest = YOLO("/content/drive/MyDrive/EPR_Detection/weights/nest_best.pt")
|
8 |
+
|
9 |
+
def predict_egg_image(img, conf_threshold, iou_threshold):
|
10 |
+
"""Predicts objects in an image using a YOLO model with adjustable confidence and IOU thresholds."""
|
11 |
+
results = model_egg.predict(
|
12 |
+
source=img,
|
13 |
+
conf=conf_threshold,
|
14 |
+
iou=iou_threshold,
|
15 |
+
show_labels=True,
|
16 |
+
show_conf=True,
|
17 |
+
imgsz=640,
|
18 |
+
)
|
19 |
+
|
20 |
+
for r in results:
|
21 |
+
im_array = r.plot()
|
22 |
+
im = Image.fromarray(im_array[..., ::-1])
|
23 |
+
|
24 |
+
return im
|
25 |
+
|
26 |
+
|
27 |
+
def predict_nest_image(img, conf_threshold, iou_threshold):
|
28 |
+
"""Predicts objects in an image using a YOLO model with adjustable confidence and IOU thresholds."""
|
29 |
+
results = model_nest.predict(
|
30 |
+
source=img,
|
31 |
+
conf=conf_threshold,
|
32 |
+
iou=iou_threshold,
|
33 |
+
show_labels=True,
|
34 |
+
show_conf=True,
|
35 |
+
imgsz=640,
|
36 |
+
)
|
37 |
+
|
38 |
+
for r in results:
|
39 |
+
im_array = r.plot()
|
40 |
+
im = Image.fromarray(im_array[..., ::-1])
|
41 |
+
|
42 |
+
return i
|
43 |
+
|
44 |
+
iface_egg = gr.Interface(
|
45 |
+
fn=predict_egg_image,
|
46 |
+
inputs=[
|
47 |
+
gr.Image(type="pil", label="Upload Image"),
|
48 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
49 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
50 |
+
],
|
51 |
+
outputs=gr.Image(type="pil", label="Result"),
|
52 |
+
title="EPR Egg Detection",
|
53 |
+
description="Upload images for egg detection inference.",
|
54 |
+
examples=[
|
55 |
+
["/content/drive/MyDrive/EPR_Detection/Examples/Egg/egg1.jpg", 0.25, 0.45],
|
56 |
+
["/content/drive/MyDrive/EPR_Detection/Examples/Egg/egg2.jpg", 0.25, 0.45],
|
57 |
+
["/content/drive/MyDrive/EPR_Detection/Examples/Egg/egg3.jpg", 0.25, 0.45]
|
58 |
+
],
|
59 |
+
)
|
60 |
+
|
61 |
+
iface_nest = gr.Interface(
|
62 |
+
fn=predict_nest_image,
|
63 |
+
inputs=[
|
64 |
+
gr.Image(type="pil", label="Upload Image"),
|
65 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
66 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
67 |
+
],
|
68 |
+
outputs=gr.Image(type="pil", label="Result"),
|
69 |
+
title="EPR Nest Detection",
|
70 |
+
description="Upload images for nest detection inference.",
|
71 |
+
examples=[
|
72 |
+
["/content/drive/MyDrive/EPR_Detection/Examples/Nest/nest1.jpg", 0.25, 0.45],
|
73 |
+
["/content/drive/MyDrive/EPR_Detection/Examples/Nest/nest2.jpg", 0.25, 0.45],
|
74 |
+
["/content/drive/MyDrive/EPR_Detection/Examples/Nest/nest3.jpg", 0.25, 0.45]
|
75 |
+
],
|
76 |
+
)
|
77 |
+
|
78 |
+
iface = gr.TabbedInterface(
|
79 |
+
[iface_egg, iface_nest],
|
80 |
+
["EPR Egg", "EPR Nest"]
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
iface.launch()
|