ERVAV2_A13 / resnet18.py
mrrahul011's picture
Update resnet18.py
078182a verified
import pytorch_lightning as pl
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import random_split, DataLoader
import torch.optim as optim
from torchmetrics import Accuracy
from torchvision import transforms
class BasicBlock(pl.LightningModule):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(pl.LightningModule):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.learning_rate = 0.001
self.accuracy = Accuracy(task='multiclass', num_classes=10)
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
################################################################################
#train loop
def training_step(self, batch, batch_idx):
x, y = batch
preds = self(x)
loss = F.cross_entropy(preds, y)
acc = self.accuracy(preds, y)
# perform logging
self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log("train_acc", acc, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
preds = self(x)
loss = F.cross_entropy(preds, y)
acc = self.accuracy(preds, y)
# perform logging
self.log("val_loss", loss, on_epoch=True, prog_bar=False, logger=True)
self.log("val_acc", acc, on_epoch=True, prog_bar=True, logger=True)
return loss
def test_step(self, batch, batch_idx):
x, y = batch
preds = self(x)
loss = F.cross_entropy(preds, y)
acc = self.accuracy(preds, y)
# perform logging
self.log("test_loss", loss, on_step=True, prog_bar=True, logger=True)
self.log("test_acc", acc, on_step=True, prog_bar=True, logger=True)
return loss
def configure_optimizers(self):
optimizer = optim.SGD(self.parameters(), lr=self.learning_rate, momentum=0.9)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=2),
"monitor": "val_loss",
"frequency": 1,
},
}
###################################
def ResNet18():
return ResNet(BasicBlock, [2, 2, 2, 2])